High Average Current Superconducting RF Cavities

LINAC2008, Victoria, Canada 2008/10/01

Takaaki Furuya KEK, Japan

SC application to high current storage rings

- In the 1990s, precise experiments supported by "factory machines" based on a storage ring were proposed, B-factory.
- Ampere class beams of electron and positron collide with each other.
- To storage such a high current beam distributed in many bunches, an RF system with a sufficiently damped HOM was required to avoid multi bunch instabilities.
- For this requirement, single-cell HOM-free SC cavities were developed at Cornell & KEK for their B-factory colliders.

500 MHz CESR-B cavity

509 MHz KEKB cavity

Advantage of SC for I A beam : sufficiently damped HOMs CW operation at high accelerating gradient

- \rightarrow reduction of the total number of cavities
- \rightarrow Typical gradient of 10 MV/m, in compare with 1 2 MV/m of NC.
- \rightarrow reduction of the total HOM impedance of the ring.
- \rightarrow single cell cavity \rightarrow low impedance of HOMs
 - \rightarrow to reduce a coupler power

Simple HOM damping scheme using beam line dampers

- \rightarrow The cavity shape with a large beam aperture is possible.
- \rightarrow The HOMs can propagate easily out of the cavity through the beam pipes.
- \rightarrow Rather low R/Q of the accelerating mode

Reduce the amount of the frequency shift to minimize the input power. (It is more serious for a large circumference because of the low revolution frequency.)

$$\Delta f_0 = -\frac{I_b f_0}{2V_c} (R/Q) \sin \phi_s < f_{rev}$$

 I_b : beam current f_0 : resonant frequency V_c : cavity voltage f_{rev} : revolution frequency

Suppress the RF phase oscillation caused by a bunch space.

$$\Delta \phi \propto \frac{\pi f_0}{V_c} \left(\frac{R}{Q}\right) I_b T_{gap}$$

 T_{gap} : duration of the empty buckets

LINAC2008 '08/10/01 T. Furuya

cavity module: CESR-B cavity (Cornell)

500 MHz single cell cavity

- Iris dia. of 240 mm
- fluted beam pipe
- R/Q = 88 ohm
- Esp/Eacc=2.5
- BCPed

Gate valve

Frequency tuner

Ferrite damper

RF window Wave guide coupler • max 280 kW

LINAC2008 '08/10/01 T. Furuya

key components

Cavity

- Nb single-cell
- Frequency: 509 MHz
- Gap length: 0.243 m
- R/Q : 93 Ohm
- electropolised
- annealed at 700C

Input Couplers

- Handling power of 400 kW(CW)
- Full reflection of 300 kW(CW)
- Qext = 5 x 10^4
- Ceramic disk of 152dia.
- Water cooling of inner and He gas cooling of outer conductor
- DC bias voltage to 2 kV between inner and outer conductors for conditioning.
- monitor & protection

LINAC2008 '08/10/01 T. Furuya

HOM Absorbers

- IB004 Ferrite of 4mm in thickness
- HIP (950°C×1500atm)
- located at RT side
- water cooling

• size

300dia x 150 mm for LBP 220dia x 120 mm for SBP

Loss factor of short bunch length

Strongly depend on the bunch length More than 25 GHz for 4mm bunch Power is

$$\mathbf{P} = \mathbf{k}(\sigma_z) \cdot \mathbf{q} \cdot \mathbf{I}_0$$

k: loss factor

q: bunch charge

I₀: average current

HOM damping: optimization of ferrite dampers

-		-	
Mode	Freq. (MHz)	R/Q (ohm)	Q meas.
TM011	1018	7	106
TM020	1027	6	95
TE111	688	6*	145
TM110	705	8*	94

Typical HOM

Mode measurements

* : R/Q at 5 cm

Nb cavity with Ferrite (at Horiz. Test)

LINAC2008 '08/10/01 T. Furuya

• Operation: KEKB/The strongest e+/e- collider

The strongest e+/e- collider for B-meson physics. Physics run of 8 years since 1999.

Accumulated luminosity of 760 fb⁻¹ with the peak luminosity of 1.7×10³⁴ cm⁻²s⁻¹.

Design Parameters

-			
	e+/LER	e-/HER	
beam energy	3.5 GeV	8 GeV	
beam current	2.6 A	1.1 A	
harmonic no.	5120		
bunch space	0.6 m	0.6 m	
bunch charge	5.2 nC	2.2 nC	
horiz. emittance	18 nm	18 nm	
(βx,βy) at IP	(33cm, 1cm)		
crossing angle	11 mrad	11 mrad	
peak luminosity	1×10 ³⁴ cm ⁻² s ⁻¹		
luminosity /day	600 pb ⁻¹		
circumference	3016 m		

Input & reflection power

- small reflection at top-up
- delivering power of 2.6 MW

- The first HOM free SC cavity was commissioned at Cornell in 1997.
- BEPC-II cavity is a modified KEKB cavity to change the frequency to 500MHz.
- Single cell HOM-free cavities provided stable operation of 1.4 A.

	CESR e + e-	DAΦNE e + e-	PEP-II e + e-	KEKB e+e-	BEPC-II e + e-	VEPP2000 e + e-
physics	В	Φ	В	В	τ-C	Φ
energy (GeV)	5.3 - 5.3	0.51 - 0.51	3.1 - 9.0	3.5 - 8.0	1.5 - 1.5	1.0 - 1.0
Current (A)	0.37 - 0.37	1.4 - 2.0	2.7 - 1.8	1.7 - <mark>1.4</mark>	0.9 - 0.9	0.11 - 0.1
RF cavity	500MHz <mark>SC(4)</mark>	368 MHz NC	476 MHz NC	509 MHz NC+ <mark>SC(8)</mark>	500 MHz <mark>SC(2)</mark>	172 MHz NC
luminosity [nb ⁻¹ s ⁻¹]	1.2	0.15	11	17	1	-
commissioning	1979-2007	1998-	1998-2008	1998-	2006-	-

SC for SR light source

Application of HOM damped cavities (1): light sources

- Because of successful operation of SC damped cavity in factory machines, this technology became an attractive way to upgrade the storage rings for light source that have a limited RF space.
- The technology of CESR-B cavity was transferred to an industry.
- Soleil cavity is based on the LEP cavity technology, Nb-Cu. HOM modes are damped by beam pipe couplers.

SC for SR light source

• Application of HOM damped cavities (1): light source

	CESR	TLS	CLS	Diamond	SSRF	BEPC-II	SOLEIL	NSLS-II	TPS
Energy (GeV)	5.3	1.5	2.5	3.0	3.5	2.5	2.75	3.0	3.0
Current (mA)	500	500	250	300	200	250	500	500	400
frequency (MHz)	500	500	500	500	500	500	352	500	500
Cavity type	CESR	CESR	CESR	CESR	CESR	KEKB	SOLEIL	-	-
Number of cav	4	1	1	2	3	2	4	4	4
Voltage (MV/cav)	1.3	1.6	2.4	2.0	2.0	1.5	1.5	1.7	1.2
Power/coupler(kW)	160	82	245	270	250	96	150	225	180

Big Bang machine; "LHC"

Application of HOM damped cavities (2) : LHC
 Big Bang machine uses 16 SC cavities for the proton beams of 0.58 A x 2.

- \rightarrow A wide beam aperture of 30 cm is available.
- \rightarrow Suppress the RF phase oscillation due to a long bunch gap of 3 μ s.
- →Less number of cavities and strong HOM damping reduce the total HOM impedance.

Beam energy	0.45 → 7 TeV
Bunch charge	18 nC
Bunch space	30 m
Average current	0.58 A
Bunch length (4σ)	1.7 → 1.1 ns
Accelerating voltage	16 MV (5.5 MV/m)
RF frequency	400 MHz
Number of cavities	8 /beam
RF power at ramping	275 kW/cavity
klystron	300 kW x 16

Big Bang machine; "LHC"

LINAC2008 '08/10/01 T. Furuya

LHC SC cavity module

Two modules per beam.
Each module contains 4 SC cavities.
Cavity technology based on LEP cavity:
→ Nb-Cu cavity
→ beam pipe HOM coupler

 \rightarrow variable input coupler

Cavity type	Nb-Cu, single-cell
frequency	400 MHz
R/Q (V ² /P)	90 ohm
Power coupler	Coax-type (variable)
Accelerating voltage	16 MV (5.5 MV/m)
Number of cavities	8
R/Q (V ² /P)	90 ohm
HOM damping	4 couplers for each

The 400 MHz cavity. Four cells installed in their cryostat.

Application of HOM damped cavities (3): beam deflection

- KEKB collides the e+ and e- with a finite crossing angle of 22 mrad to obtain the minimum bunch spacing of 0.6 m, avoiding the first parasitic collision.
- Crab crossing scheme makes a head-on collision in the finite crossing scheme so as to suppress the beam-beam interaction.
- Recent simulation study of crab crossing showed the possibility of luminosity enhancement not only by geometrical effect but also by a beam-beam effect on the beam size.
- Kick voltage is determined by the beta function and the phase advance of betatron oscillation at the cavity location, typically 0.9 1.4 MV.
- •Two crab cavities were installed and commissioned.

Frequencyfor	508.887MHz
R/Q	46.7 ohm
Esp/Vkick	14.4MV/m/MV
Hsp/Vkick	415 Oe/MV
Kick voltage	1.44 MV

Beam deflection: CRAB cavity LINAC2008 '08/10/01 T. Furuya

Structure of a CRAB module

- The beam bunches are kicked in the horizontal by TM110 which is not the lowest mode of the cavity.
- The lowest mode, TM010 is coupled out by a coaxial line of the beam pipe, and absorbed by a ferrite at the end of the line.

Beam deflection: CRAB cavity

LINAC2008 '08/10/01 T. Furuya

Structure of a CRAB module

Ferrite damper

Crab cavity & jacket

Horizontal test

coaxial line

Beam deflection: CRAB cavity

commissioning

- The cavities were installed in2007.
- The crab kick was confirmed by a streak camera.
- The effect to the luminosity was observed at a low current region, but not at a high current region.

Crab cavity in the KEKB tunnel

- The crab cavities worked well, providing a stable kick voltage.
- Crab technology has the possibility of obtaining sub-pico second X-ray pulses by tilting the long bunches using a vertical crab kick.

Crab effect monitored by streak camera

LINAC2008

'08/10/01 T. Furuya

• For an advanced light source:

ERL is not restricted to the equilibrium longitudinal and transverse emittances of storage rings.

- \rightarrow Short bunch length and a flexible bunch pattern are available.
- \rightarrow Electron beam characteristics are determined by the injector.
- \rightarrow high efficiency, and reduced dump activation.
- experimental demonstration of energy recovering has been done. SCA-FEL : using a 50 MeV beam, 1986
 J-Lab FEL: 150 MeV x 10 mA, 1994
 JAERI-FEL; 15 MeV x 10 mA
- another application of ERL: BNL-ERL RHIC : electron cooling of gold ion beams 5-cell 703 MHz SC cavity 500 mA (1-turn) & 1 A (2-turns)
 eRHIC: electron hadron/heavy ion collider using an ERL 5-cell 703 MHz SC cavity 10-25 GeV ERL

LINAC2008 '08/10/01 T. Furuya

SC for ERL

two types of SC CW linac:

BNL design: 703 MHz, 5-cell cavity for 1A

injector linac:

without energy recovery: $10MV \times 100mA = 1 MW$ accelerate a beam of $100 mA \rightarrow$ heavy beam loading of cw \rightarrow power coupler number of cells is determined by the coupler power.

+ injection linac module
 - Fabricated a 2-cell prototype cavity.
 - Just start the design of CPL and cryo-module.
 Double coupler with water cooling
 3 - cavity injection linac module
 - with energy recovery :
 high CW gradient of 15 -20 MV/m
 high Q & no field emission
 multi cell cavity with damped HOM : BBU current limitation
 JLab design: 748 MHz, 5-cell cavity for 1A

End Plate Ti

Summary

• SC for high intensity beam

- Single cell HOM damped cavities have achieved a beam of >1 A in factory machines, delivering a power of 400 kW to the beam.
- Input couplers and HOM dampers (couplers) work well and support the stable operation.
- Application of high current SC cavities is expanded increasingly.
 - to middle size rings of light sources.
 - to deflecting cavity, CRAB
 - to proton rings, LHC.
- New 9 cell shape is optimized as a main linac structure of ERL, which has large diameters of cell iris and beam pipes. Furthermore, mode converter is attached on a beam pipe to propagate out the quadrupole modes.
- BBU simulation shows the threshold limit of ~600 mA for this 9 cell structure.