
Simulated Measurements of Beam Cooling in 
Muon Ionization Cooling Experiment
Tanaz Angelina Mohayai*, Illinois Institute of Technology & Fermilab, USA

Pavel Snopok, Illinois Institute of Technology & Fermilab, USA
Chris Rogers, STFC Rutherford Appleton Laboratory, UK

David Neuffer, Fermilab, USA 
for the MICE Collaboration

The international Muon Ionization Cooling Experiment 
(MICE) aims to demonstrate ionization beam cooling: 

―Muon beam is passed through an absorbing material to 
reduce its phase-space volume (emittance).

Why cooled muon beams:
―Neutrino Factory: for intense and pure neutrino beams.
―Muon Colliders: for compact lepton colliders with energies of 
up to several TeV.

The figure of merit for cooling: root-mean-square (RMS) 
emittance reduction. 

Alternative figures of merit for cooling: changes in phase-
space density and volume using Kernel Density Estimation 
(KDE) technique. 

Studied a MICE Step IV lattice with Match 2 and the in-operable Match 1 
coil fields set to zero in the downstream Spectrometer Solenoids.

Demonstrated cooling through phase-space density increase and 
phase-space volume decrease using KDE.   

Abstract

Introduction

How MICE demonstrates beam cooling: 
―Ensure muon beam purity using PID detectors (time-of-flight, 
Cherenkov, electron muon ranger).

―Reconstruct muon transverse coordinates X
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using the trackers. 
―Compute RMS emittance from transverse coordinates. The preliminary density, volume and emittance evolution plots in the 

MICE Step IV channel: 
The yellow curves represent a channel with no absorber. 
The blue curves represent a channel with a 65 mm LiH absorber.
The evolution curve remains constant for an empty channel except at 
z=1.5 m due to the turned off downstream Match 1 and Match 2 coils.  

Conclusion

Estimated density vs. 
x position plot for 
500 muons. 

Scott's rule of thumb 
bandwidth parameter 
multiplied by a large 
factor oversmoothes 
the density. 

A smaller factor leads 
to a noisier density. 

Preliminary density vs. 
volume1/4 plots: 

In the channel with 65 
mm LiH absorber, the 
density at smaller radius 
increases as the beam 
passes through the 
absorber.

In an empty channel, no 
change in density is 
observed.

BUT a different measure of cooling is 
needed because of the sensitivity of the 

RMS emittance to non-linear effects.

 

How MICE demonstrates beam cooling using KDE: 
Center a four dimensional Gaussian kernel function (weighting 
function shaped as multi-dimensional ellipse of variance h = h

f
∑) 

at each muon.
Estimate the density at an arbitrary point x = (x, p
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) by 

summing the contributions from all muons.

Kernel Density Estimation in MICE

Kernel Density Estimation 
(KDE) technique: 

―Well known in image 
processing.

―No assumptions are made 
about  the distribution. 

High probability density regions 
shown in lighter shades. 

Actual distribution shown on the 
left. 

Compared to Gaussian density 
(middle), KDE better reveals the 
actual distribution.  

M. Rousson, et. al., “Efficient Kernel Density Estimation of Shape and Intensity Priors for Level Set 
Segmentation”, (MICCAI) (2005) 

h
f
 and h are the bandwidth factor and parameter. ∑ is the 

covariance matrix of the muon coordinates. 
h has a strong effect on the estimated density. Scott's rule of 
thumb was used here, 

 Before and after MICE photos: the cooling channel (left, 2015) enclosed by 
the partial return yoke (PRY) (right, 2016).

The current configuration: MICE Step IVBandwidth Factor Effect

Simulation Results
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