
SECTOR MAGNETS OR TRANSVERSE ELECTROMAGNETIC FIELDS
IN CYLINDRICAL COORDINATES ∗

T. Zolkin†, Fermilab, Batavia IL 60510, USA

Abstract
Laplace’s equation in normalized cylindrical coordinates

is considered for scalar and vector potentials describing elec-
tric or magnetic fields with invariance along the azimuthal
coordinate [1]. A series of special functions are found which
when expanded to lowest order in power series in radial and
vertical coordinates (ρ = 1 and y = 0) replicate harmonic
homogeneous polynomials in two variables. These functions
are based on radial harmonics found by Edwin M. McMil-
lan forty years ago. In addition to McMillan’s harmonics,
a second family of radial harmonics is introduced to pro-
vide a symmetric description between electric and magnetic
fields and to describe fields and potentials in terms of the
same functions. Formulas are provided which relate any
transverse fields specified by the coefficients in the power
series expansion in radial or vertical planes in cylindrical
coordinates with the set of new functions.

This result is important for potential theory and for theo-
retical study, design and proper modeling of sector dipoles,
combined function dipoles and any general sector element
for accelerator physics and spectrometry.

INTRODUCTION
The description of sector magnets, any curved magnet

symmetric along its azimuthal (longitudinal) cylindrical co-
ordinate, is an important issue. Every modern accelerator
code includes such elements, the most important being com-
bined function dipoles. A widely used method, which goes
back to Karl Brown’s 1968 paper [2], is based on a solution
of Laplace’s equation for a scalar potential using a power
series in cylindrical coordinates. A similar approach applied
to Laplace’s equation for the longitudinal component of a
vector potential can be found for example in [3]. The same
approach appears in more recent books, e.g. [4].
Two major bottlenecks should be noticed. First, if one

looks for a solution in the form of a series, then these se-
ries must be truncated. In our case truncation means that
potentials no longer satisfy Laplace’s equation. Of course
potentials can “satisfy” Laplace’s equation up to any desired
order by keeping more and more terms in the expansion,
but they are not exact. More importantly, the recurrence
equation is undetermined: in every new order of recurrence
one has to assign an arbitrary constant, which will affect all
other higher order terms. This ambiguity leads to the fact
that there is no preferred, unique choice of basis functions; it
makes it difficult to compare accelerator codes, since differ-
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ent assumptions might be used for representations of basis
functions.

This indeterminacy has a simple geometrical illustration.
Looking for a field with e.g. pure normal dipole component
on a circular designed equilibrium orbit in lowest order, one
can come up with an almost arbitrary shape of the magnet’s
north pole if its south pole is symmetric with respect to the
midplane. In the case of a dipole, the series can be truncated
by keeping only its dipole component. For higher order
multipoles in cylindrical coordinates truncation without vio-
lation of Laplace’s equation is not possible.

While working on an implementation of sector magnets
for Synergia, I found assumptions which let me sum series
for pure electric and magnetic skew and normal multipoles.
Looking further for symmetry in the description allowed
me to generate a family of solutions in which all the series
could be summed, so that no truncation was required. While
discussing my results with Sergei Nagaitsev, he brought my
attention to an article by McMillan written in 1975 [5]. As I
found later, the same result was independently obtained by
S. Mane and published in the same journal about 20 years
later [6] without citing McMillan’s original work. It made
me to write this article in order to bring attention back to
thees forgotten results.

Joining my results to McMillan’s, I would like to present
a new representation for multipole expansions in cylindrical
coordinates. Any transverse field can be expanded in terms
of these functions and related to power series expansions in
horizontal or vertical planes. The new approach does not
contradict previous results but embraces them. The ambigu-
ity in choice of coefficients and the problem of truncation
are resolved. Thus it can be employed for theoretical studies,
design and simulation of sector magnets.

The expansion of static electromagnetic fields with ro-
tational symmetry about vertical axis, y, is derived in
right-handed normalized cylindrical coordinates (êρ, êy, êθ ).
Sometimes sector coordinates (êx, êy, êθ ) are used instead.
They defined as another orthogonal right-handed normalized
system of coordinates with ρ = x + 1. It is in sector coor-
dinates scalar potential Φ and only one nonvanishing com-
ponent of vector potential Aθ , when expanded at x, y = 0,
reproduce harmonic homogeneous polynomials in the lowest
order of expansion.

The paper is structured as follows. In first section we con-
sider pure transverse electric or magnetic fields in cylindrical
coordinates. In the second one we compare new results with
traditional approach of power series ansatz. Tables 1–2 are
supplementary materials with sector harmonics and its rela-
tionship with power series expansion of fields.
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MULTIPOLES IN CYLINDRICAL
COORDINATES

In the normalized right-handed cylindrical coordinate sys-
tem, when cylindrical symmetry ∂/∂ θ = 0 is imposed, the
Laplace equations reduce to

4Φ ≡ ∇ · ∇Φ = 4⊥Φ +
1
ρ

∂Φ

∂ρ

=
∂2Φ

∂ρ2 +
1
ρ

∂Φ

∂ρ
+
∂2Φ

∂y2 = 0 ,

4A ≡ ∇ (∇ · A) − ∇ × (∇ × A) =
(
4Aθ −

Aθ
ρ2

)
êθ

=

(
∂2 Aθ
∂ρ2 +

1
ρ

∂ Aθ
∂ρ
+
∂2 Aθ
∂y2 −

Aθ
ρ2

)
êθ = 0 .

Compared to the case with Cartesian coordinates these equa-
tions look quite different from each other. In order to retain
the symmetry one can note that

(4A)θ =
1
ρ

[
∂2

∂ρ2 −
1
ρ

∂

∂ρ
+

∂2

∂y2

]
(ρ Aθ ) .

Thus looking for the solution in a form similar to harmonic
homogeneous polynomials

Φ = −
n∑

k=0

Fn−k(ρ)
(n − k)!

yk

k!

(
Cn sin

k π
2
+ Dn cos

k π
2

)
,

Aθ = −
n∑

k=0

1
ρ

Gn−k(ρ)
(n − k)!

yk

k!

(
Cn cos

k π
2
− Dn sin

k π
2

)
,

where Cn and Dn are normal and skewmultipole coefficients
of the expansion, one can find that functionsFn(ρ) andGn(ρ)
are related to each other through

Gn−1 =
1
n
ρ
∂ Fn
∂ρ

Fn−1 =
1
n

1
ρ

∂ Gn
∂ρ

and satisfying recurrence equations

∂2Fn(ρ)
∂ρ2 +

1
ρ

∂ Fn(ρ)
∂ρ

= n (n − 1) Fn−2(ρ) ,

∂2Gn(ρ)
∂ρ2 − 1

ρ

∂ Gn(ρ)
∂ρ

= n (n − 1) Gn−2(ρ) .

In addition, Fn(ρ) and Gn(ρ) allow us to construct lowering
operators

Fn =
1

(n + 1)(n + 2)

[
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)]
Fn+2 ,

Gn =
1

(n + 1)(n + 2)

[
ρ
∂

∂ρ

(
1
ρ

∂

∂ρ

)]
Gn+2 ,

and corresponding raising operators where the lower limits
take care of two arbitrary constants of integration

Fn = n (n − 1)
∫ ρ

1

1
ρ

∫ ρ

1
ρFn−2 d ρ d ρ,

Gn = n (n − 1)
∫ ρ

1
ρ

∫ ρ

1

1
ρ
Gn−2 d ρ d ρ .
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Figure 1: First five even (top row) and odd (bottom row)
members of power functions Pn(ρ) = ρn, Fn(ρ), Gn(ρ)ρ and
Gn(ρ) from the left to the right respectively.

These operators can be used to recursively calculate all
members of F− and G−functions. An additional constraint
to terminate recurrences defines lowest orders as

F0 = 1, F1 = ln ρ, G0 = 1, G1 = (ρ2 − 1)/2.

The first ten members of Fn and Gn are shown in Fig. 1.
Note that Taylor series of these functions at ρ = 1 are
T(Fn,Gn) = xn + O(xn+1). The difference relation for Fn
and first members have been found by E.M. McMillan and
I would like to acknowledge it by given them a name of
McMillan radial harmonics. In addition to his results we
introduced adjoint McMillan radial harmonics, Gn, in order
to provide the symmetry in description between electric and
magnetic fields. Finally, in order to define the set of func-
tions for pure sector multipoles (see Fig. 2) we will define
sector harmonics:

A(e)n (ρ, y) =
n∑

k=0

(
n
k

)
cos

k π
2
Fn−k(ρ) yk,

A(m)n (ρ, y) =
n∑

k=0

(
n
k

)
cos

k π
2
Gn−k(ρ)

ρ
yk,

B(e)n (ρ, y) =
n∑

k=0

(
n
k

)
sin

k π
2
Fn−k(ρ) yk,

B(m)n (ρ, y) =
n∑

k=0

(
n
k

)
sin

k π
2
Gn−k(ρ)

ρ
yk,

obeying differential relations

n (A,B)(e )
n−1 = ±

∂ (B,A)(e)n
∂y

=
1
ρ

∂
[
ρ (A,B)(m)n

]
∂ρ

,

n (A,B)(m)
n−1 = ±

1

Aρ

∂
[
Aρ (B,A)

(m)
n

]
∂y

=
∂ (A,B)(e)n

∂ρ
.

Last pair of equations show that these harmonics describe
not only potentials but components of a field as well, since

E = −∂Φ
∂ρ

êρ−
∂Φ

∂y
êy , B =

1
ρ

∂ ρAθ
∂y

êρ−
1
ρ

∂ ρAθ
∂ρ

êy .
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Figure 2: 3D models of pure 2n-pole sector magnets. North (red) and south (blue) poles are given by constant levels of
(B,A)(e)n = ∓const for normal and skew magnets respectively. From the left to the right: skew S-dipole, normal S-dipole,
skew S-quadrupole, normal S-quadrupole and skew S-sextupole. The circular design orbit ρ = 1 is shown in green color.

RECURRENCE EQUATIONS IN SECTOR
COORDINATES

An alternative approach to finding expansions for poten-
tials is to use a general power series ansatz

Φ = −
∞∑

m,n≥0
Vm,n

xm

m!
yn

n!
,

Aθ = −
∞∑

m,n≥0

1
1 + x

Vm,n
xm

m!
yn

n!
.

In Cartesian coordinates the substitution gives the recur-
rence relation Vm+2,n + Vm,n+2 = 0. It immediately defines
all coefficients, and up to a common factor, they coincide
with the coefficients of harmonic homogeneous polynomi-
als. In sector coordinates the same substitution gives two
new undetermined recurrences, and, for scalar and vector
potentials they are respectively

Vm+2,n + Vm,n+2 = −(m ± 1)Vm+1.n − m Vm−1,n+2.

In order to solve these recurrences, one can look for a solu-
tion where each term can be expressed in the form

Vi, j = V∗i, j + V (i+j−1)
i, j + V (i+j−2)

i, j + V (i+j−3)
i, j + . . .

where starred variables are the “design” terms given by pure
multipole fields satisfying V∗

m+2,n + V∗
m,n+2 ≡ 0. Other co-

efficients V (k)i, j are terms induced by lower k-th order pure
multipoles due to recurrence, and for a particular 2n-pole
for i + j > n are subject to be determined.
In order to use these equations one will have to truncate

a recurrence. As a result the potentials representing mag-
nets no longer satisfy Laplace’s equation. This violates the
“physics” and should be avoided. While potentials can be
approximated with any precision by keeping an appropriate
number of terms, when solving the recurrence, at each new
order one will find that an arbitrary constant αi ∈ (0; 1)
should be introduced since the system is undetermined. An
additional assumption, (Aθ,Φ) |x=0 ∝ yn allows us to trun-
cate or sum the series. The resulting solutions would then
coincide with sector harmonics obtained above.

CONCLUSION
The scalar and vector Laplace’s equations for static trans-

verse electromagnetic fields in normalized curvilinear or-
thogonal coordinates with constant curvature κ = 1 and
cylindrical symmetry are solved. The set of solutions named
sector harmonics (first few members are listed in Table 1). It
should not be confused with cylindrical harmonics where ρ-
dependent terms are given by Bessel functions. In contrast,
the radial part is given by a set of harmonics, independently
introduced by E.M. McMillan in a “forgotten” article, and
adjoint radial harmonics described in this work. When ex-
panded around a circular design orbit (ρ = 1, y = 0), sector
harmonics resemble harmonic homogeneous polynomials
of two variables which are solutions in Cartesian geometry.
This set of functions has two major advantages over the tradi-
tional approach, widely used in the accelerator community,
of using recurrences based on a power series ansatz. They do
not require truncation and satisfy Laplace’s equation exactly.
In addition they provide a well defined full basis of functions
which can be related to any field by expansion in radial or
vertical planes, see Table 2. Thus, I would like to suggest
the set of sector harmonics as a new basis for the description
and design of sector magnets with translational symmetry
along the azimuthal coordinate.
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Table 1: Sector Harmonics

n

A(e)n 0 1

1 ln ρ

2
[
ρ2−1

2 − y2
]
− ln ρ

3
[
−3 ρ2−1

2

]
+ 3

(
ρ2+1

2 − y2
)

ln ρ

4
[

3(ρ4+4 ρ2−5)
8 − 6 ρ2−1

2 y2 + y4
]
− 3

(
1
2 + ρ

2 − 2 y2
)

ln ρ

A(m)n 0 1
ρ

1 1
ρ

[
ρ2−1

2

]
2 1

ρ

{[
− ρ

2−1
2 − y2

]
+ ρ2 ln ρ

}
3 1

ρ

{[
3(ρ2+1)

4
ρ2−1

2 − 3 ρ2−1
2 y2

]
− 3

2 ρ
2 ln ρ

}
4 1

ρ

{[
− 3(5 ρ4−4 ρ2−1)

8 + 6 ρ2−1
2 y2 + y4

]
+

3(2+ρ2−4 y2)
2 ρ2 ln ρ

}
B(e)n 0 0

1 y

2 y [2 ln ρ]

3 y
{[

3 ρ2−1
2 − y2

]
− 3 ln ρ

}
4 y

{[
−12 ρ2−1

2

]
+ 4

(
3 ρ2+1

2 − y2
)

ln ρ
}

B(m)n 0 0

1 y
ρ

2 y
ρ

[
2 ρ2−1

2

]
3 y

ρ

{[
−3 ρ2−1

2 − y2
]
+ 3 ρ2 ln ρ

}
4 y

ρ

{[
4 3(ρ2+1)

4
ρ2−1

2 − 4 ρ2−1
2 y2

]
− 6 ρ2 ln ρ

}

Table 2: Relationship between coefficients determining the strength of pure normal and skew sector multipoles and power
series expansion of field in radial and vertical planes at x, y = 0 (ρ = 1).

Cn Dn

n x = 0 y = 0 x = 0 y = 0
1 Fy Fy Fx Fx

2 ∂y Fx ∂x Fy −∂y Fy ∂x Fx + Fx

3 −∂2
y Fy ∂2

x Fy + ∂x Fy −∂2
y Fx ∂2

x Fx + ∂x Fx − Fx

4 −∂3
y Fx ∂3

x Fy + ∂
2
x Fy − ∂x Fy ∂3

y Fy ∂3
x Fx + 2 ∂2

x Fx − ∂x Fx + Fx

5 ∂4
y Fy ∂4

x Fy + 2 ∂3
x Fy − ∂2

x Fy + ∂x Fy ∂4
y Fx ∂4

x Fx + 2 ∂3
x Fx − 3 ∂2

x Fx + 3 ∂x Fx − 3 Fx
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