Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPYP043 | The Design of Test Beamline at HEPS | brightness, experiment, photon, wiggler | 90 |
|
|||
This paper describes the design of a test beamline for a new generation of high-energy, high-flux, and high-coherence SR beamlines. The beamline will be built at ID42 of HEPS. The beamline includes two sources, a wiggler and an undulator, to provide high-energy, high thermal power, large size, and high-coherence, high-brightness X-ray beams, respectively. In the current design, the beamline mainly has optical components such as monochromators, CRLs, and filters. With different combinations of sources and optical components, the beamline can provide various modes, including white, monochromatic, and focused beam. Using a Si111 DCM, the beamline covers a wide photon energy range from 5 to 45 keV. In the future, the beamline will be capable of providing monochromatic beam with photon energy over 300 keV. The wiggler’s white beam can provide high thermal load test conditions over 1 kW. The beamline offers high flexibility and versatility in terms of available beam size (from micrometers to over 100 mm), energy resolution, and photon flux range. Various experimental techniques including diffraction, spectroscopy, imaging, and at-wavelength measurement can be performed on this beamline. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP043 | ||
About • | Received ※ 08 November 2023 — Revised ※ 09 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 18 April 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPPP004 | High Heat Load Transfocator for the New ID14 ESRF Beamline | alignment, SRF, collimation, focusing | 158 |
|
|||
X ray refractive lenses (CRL) are powerful in-line optics for focusing x-rays. They offer many advantages such as compactness, a comfortable working distance, robustness, and are suitable for use in a wide range of energy. In the scope of the new nuclear resonance ID14 beamline at ESRF, a new transfocator was developed. This transfocator benefits from the previous experience of ESRF’s transfocators to withstand the high power densities (645W/mm2) and total power (405W) generated by the future CPMU18 and the high positioning tolerance required = <± 20µm within the same LCR assembly and between different assemblies. A thermal load analysis was carried out to optimize the cooling design for both 1D and 2D Beryllium lenses unit assembly. The tight alignment specifications was achieved thanks a good machining of both lenses unit mechanical assembly and reference V shaped rail. High positioning repeatability of CRLs actuator is assured by an optimized flexor and a good alignment procedure. The transfocator vessel is installed on a granite and a 4-DOF alignment table. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP004 | ||
About • | Received ※ 27 October 2023 — Revised ※ 06 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 18 January 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPPP032 | Photon Slits Prototype for High Beam Power Using Rotational Motions | photon, operation, optics, vacuum | 196 |
|
|||
A new slits prototype utilising a rotatable oxygen-free high thermal conductivity (OFHC) copper block to absorb high heat load is developed for the Diamond-II upgrade. The slits will be used at front end of Diamond I13 X-ray Imaging and Coherence beamline which has two canted beamline branches. Required by the beamline optics, the front end slits function as virtual sources for the 250 meters long beamline. Working for the dual beam geometry, these specialised slits can vary the size of one x-ray beam with rotational motions while allowing the second beam to pass through unaffected. The rotational operations of the slits are achieved by an innovative commercial flex pivot and a unique in-house designed pivoting flexure. | |||
![]() |
Poster WEPPP032 [1.377 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP032 | ||
About • | Received ※ 24 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 18 February 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPPP049 | Designs of Multiple Experimental Models for Pink SAXS Station | experiment, scattering, detector, radiation | 226 |
|
|||
Pink SAXS (small angle X-ray scattering) station is dedicated to performing scattering experiments. A classical planar undulator is adopted as the beam source. The pink beam from the fundamental radiation of the undulator at the range of 8-12keV will be used directly after reflected by a pure silicon reflector. The high flux pink beam will be used to perform high time-resolution SAXS experiments. Monochromatic beam, which is obtained by a normal horizontal monochromator, also can be used alternately to perform high energy resolution experiments. Monochromatic beam and pink beam can be switched through moving in and out of the monochromator. The scattering background is reduced effectively using three sets of scatterless slits. Three diamond compound refractive lenses with different curvatures are employed to focus the 12keV monochromatic beam at sample position, detector position and infinite position respectively. A totally 24 meters long vacuum detector tube is adopted as SAXS camera. Three vacuum compatibility EIGER detectors are equipped at different positions to collect WAXS, SAXS and USAXS signals respectively. Then simultaneous USAXS/SAXS/WAXS measurement could be performed. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP049 | ||
About • | Received ※ 01 November 2023 — Revised ※ 05 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 01 July 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP003 | FEM Simulations for a High Heat Load Mirror | polarization, synchrotron, optics, simulation | 274 |
|
|||
At the variable polarization XUV beamline P04 of PETRA III the first mirror is used to switch the beam between the two branches of the beamline. The heat load on this white beam mirror is dependent on the degree of polarization and the energy of the first harmonic of the synchrotron radiation. For this project the water cooled "notched" mirror approach by Khounsary* and Zhang et al.** has been evaluated with FEM simulations. These show promising results for linear horizontal (LH) polarization in which the heat load profile is aligned with the mirror length. For linear vertical (LV) polarization the heat load is concentrated in the mirror centre, which violates the basic concept of the "notched" mirror design and therefore the simulation results indicate only poor performance. To compensate for this a secondary cooling loop has been implemented and will be shown to improve the performance for the LV case significantly. Additionally, a new design approach is evaluated to reduce the peak temperatures of the mirror, which otherwise ranged at 140-180°C.
* Khounsary, A.M., Proc. SPIE 3773, X-Ray Opt. Des., (1999). 10.1117/12.370114 ** Zhang, L. et al., J. Phys.: Conf. Ser. 425, 052029 (2013). 10.1088/1742-6596/425/5/052029. |
|||
![]() |
Poster THPPP003 [1.369 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP003 | ||
About • | Received ※ 24 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 28 May 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP008 | Optimization of Thermal Deformation of a Horizontally Deflecting High-Heat-Load Mirror Based on eInGa Bath Cooling | synchrotron, radiation, factory, optics | 283 |
|
|||
Funding: This work is supported by the Chinese Academy of Science (CAS) and the Anhui province government for key techniques R&D of Hefei Advanced Light Facility. The synchrotron facility are developing towards higher brightness, lower divergence, narrower pulse, higher stability, etc. Therefore, the requirements of the first mirror of the beamline, who bear high-heat-load, were upgraded, and the performances of the mirror will be affected easily by other factors, such as flow induced vibration, clamping force, etc. Indirect water cooling based on eInGa bath is regarded as an effective mean to solve these thorny problems in designing of the first mirror cooling. However, for the case a horizontal de-flection mirror, the unilateral cooling method is usually adopted, resulting in some changes in the structure of the mirror. In this paper, a first mirror horizontally deflect-ing in Hefei advanced light source (HALF) are taken as examples to introduce the optimization method to achieve ultra-low meridian slope error of the first hori-zontal deflection mirror. The results show that this opti-mization method provides a rapid design mean to design the cooling scheme of the horizontally deflecting mirror based on the eInGa bath. |
|||
![]() |
Poster THPPP008 [2.901 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP008 | ||
About • | Received ※ 01 November 2023 — Revised ※ 06 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 26 February 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP009 | The Heat Load Calculation in the Grating-Based Beamline at Hefei Advanced Light Facility (HALF) | synchrotron, synchrotron-radiation, optics, radiation | 287 |
|
|||
Funding: This work is supported by the Chinese Academy of Science (CAS) and the Anhui province government for key techniques R&D of Hefei diffraction limited light source. For the 4th generation synchrotron radiation (SR) light source, the heat load causes severe thermal deformation on the beamline optics as the emittance is reaching at the physical limit. The precise calculation of heat load on the optical elements is important for the thermal analysis including cooling method and thermal deformation simulation. A heat load calculation code has been developed for grating based SR beamline optics, which consists of modules of SR source simulation, mirror reflectivity and grating efficiency. The calculation results has been checked with SRCalc results. This code has been used to calculate the heat load of the Test Beamline optics at Hefei Advanced Light Facility (HALF). The heat absorbed by the first three optical elements¿including a toroidal mirror, a plane mirror and a plane grating¿is calculated. [1]R. Reininger. SRCalc (2001). Unpublished [2]L. Rebuffi, et.el., J. Synchrotron Radiat. 27: 1108-1120 (2020). [3]Z. Sun, et.al., The Innovation, 4 (6), 100514 (2023). |
|||
![]() |
Poster THPPP009 [1.853 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP009 | ||
About • | Received ※ 25 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 09 January 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP035 | Mechanical System of the U26 Undulator Prototype for SHINE | FEL, SRF, alignment, linac | 325 |
|
|||
The Shanghai High repetition rate XFEL and Extreme light facility (SHINE) is under construction and aims at generating X-rays between 0.4 and 25 keV with three FEL beamlines at repetition rates of up to 1 MHz[1-3]. The three undulator lines of the SHINE are referred to as the FEL-I, FEL-II, and FEL-III. Shanghai Synchrotron Radiation Facility(SSRF) will manufacture a total of 42 undulators (U26) with a period length of 26mm for FEL-I and 22 undulators (U55) with a period length of 55mm for FEL-II. Both the U26 and U55 are 4m long and use a common mechanical system. By using the specially designed double lever compensation springs can eliminate different magnetic force on the drive units. A U26 prototype has been developed and tested at SSRF. This paper describes the mechanical system design¿simulation and testing results of the U26 prototype, as well as its compatibility with U55. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP035 | ||
About • | Received ※ 25 October 2023 — Revised ※ 07 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 11 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP036 | Prototype of High Stability Mechanical Support for SHINE Project | quadrupole, feedback, radiation, FEL | 328 |
|
|||
Funding: CAS Project for Young Scientists in Basic Research (YSBR-042), National Natural Science Foundation of China (12125508, 11935020)¿Program of Shanghai Academic/Technology Research Leader (21XD1404100). Quadrupole stability of undulator segment is key to the beam performance in SHINE project. Vibration stability requirement of quadrupole is not larger than 200nm displacement RMS between 1 and 100Hz, but the field test of SHINE tunnel shows that the underground vibration during the day time is greater than 200nm. In this paper, a mechanical support including marble base and active vibration reduction platform is sophisticated designed. With this support, vibration stability of the key quadrupole is expected to be improved and the performances of the quadrupole meet the demands. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP036 | ||
About • | Received ※ 25 October 2023 — Revised ※ 07 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 12 January 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP049 | Realization of a Compact APPLE X Undulator | MMI, FEL, laser, GUI | 346 |
|
|||
The APPLE X is a compact elliptically polarizing undulator with a small round magnetic gap that provides full polarization control of synchrotron radiation at a lower cost and in less built-in space than comparable devices. The APPLE X will be the source for MAX IV’s potential future Soft X-ray (SXL) FEL. The mechanical design, finite element analysis optimization, assembly process, magnetic measurements, and shimming of a full-scale 2 m, 40 mm-period SmCo permanent magnet undulator are presented. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP049 | ||
About • | Received ※ 23 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 07 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP050 | Overview of the Unified Undulator Solution for the PolFEL Project | FEL, electron, free-electron-laser, laser | 349 |
|
|||
The PolFEL project, consisting of building a free electron laser, will be the first in Poland and one of the several sources in the world of coherent, tuneable electromagnetic radiation within the wide spectrum range from THz to VUV, emitted in pulses from femtoseconds to picoseconds, with high impulse power or high average power. The research infrastructure will include a free electron laser (FEL), a photocathode testing laboratory, end-stations, and laboratories necessary for the operation of the apparatus, and laboratories for users from the beamlines. The main FEL accelerator will consist of three independent branches, which will include chains of undulators adjusted to three different energy ranges: VUV, IR and THZ. The main challenge was the unification of the final undulator solution, so that it could be applied to all three branches. The main goal of this approach was to save time, costs, human and material resources. The overview of issues and solutions related to the construction of undulators for the PolFEL project, and the challenges that had to be fulfilled to reach the final design, is presented in this publication. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP050 | ||
About • | Received ※ 24 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 25 March 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP052 | Design and Development of Coated Chamber for In-Air Insertion Devices | vacuum, synchrotron, insertion-device, synchrotron-radiation | 352 |
|
|||
The insertion devices ¿ID¿is an important guarantee for further improving the performance of the light source to meet the needs of different users. For in-air ID (undulator, wiggler, etc.), the magnetic structure is in the air, and the vacuum chamber is in the middle of the magnetic structure to ensure the normal operation of the beam. In order to increase the magnetic field strength, the magnetic gap is generally relatively small. Factors such as small setting space, high precision, and low conductance all pose challenges to the design and processing of vacuum chamber. This paper introduces the development process of the vacuum chamber prototype of the coating type ID for the China ’s first diffraction-limited light source HEPS. The simultaneous analysis and vacuum pressure distribution calculation of the ID are carried out, and the NEG coating scheme is proposed as an more economical means to obtain ultra-high vacuum. The prototype NEG coating progress is introduced. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP052 | ||
About • | Received ※ 02 November 2023 — Revised ※ 10 November 2023 — Accepted ※ 12 November 2023 — Issued ※ 18 July 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||