Paper | Title | Other Keywords | Page |
---|---|---|---|
TUOAM02 | Update of the BM18 ESRF Beamline Development: Presentation of Selected Equipment and Their Commissioning | detector, vacuum, SRF, experiment | 1 |
|
|||
This article highlights specific equipment that have not yet been described in previous publications, notably the in-vacuum cooled fast shutter for high-energy, the wide aluminium window and tailored high-precision slits (400x200 mm opening). 2022 and 2023 have seen the installation and commissioning of these new equipment. The ID18 beamline opened for user applications in September 2022 with limited capabilities and has been increasing its possibilities since then. It is expected to be fully equipped by the end of 2024. | |||
![]() |
Slides TUOAM02 [187.155 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUOAM02 | ||
About • | Received ※ 25 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 08 July 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUOBM06 | MINERVA, a New X-ray Facility for the Characterization of the ATHENA Mirror Modules at the ALBA Synchrotron | vacuum, optics, detector, synchrotron | 28 |
|
|||
Funding: MINERVA is funded by the European Space Agency (ESA) and the Spanish Ministry of Science and Innovation. In this paper we present the newly built beamline MINERVA, an X-ray facility at the ALBA synchrotron. The beamline has been designed to support the development of the X ray observatory ATHENA (Advanced Telescope for High Energy Astrophysics). MINERVA will host the necessary metrology equipment to integrate the stacks produced by cosine in a mirror module (MM) and characterize their optical performances. The optical and mechanical design is based on the XPBF 2.0 from the Physikalisch-Technische Bundesanstalt (PTB), at BESSY II already in use to this effect and its construction is meant to significantly augment the capability to produce MM. The development of MINERVA has addressed the need for improved technical specifications, overcome existing limitations and achieve enhanced mechanical performances. We describe the design, construction process and implementation of Minerva that lasted three years. Even though the beamline is still under a commissioning phase, we expose tests and analysis that have been recently performed, remarking the improvements accomplished and the challenges to overcome, in order to reach the operational readiness for the mirror modules mass production. |
|||
![]() |
Slides TUOBM06 [47.675 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUOBM06 | ||
About • | Received ※ 24 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 09 February 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPYP008 | Exactly Constrained, High Heat Load Design for SABIA’s First Mirror | vacuum, alignment, monitoring, synchrotron | 44 |
|
|||
Funding: Ministry of Science, Technology and Innovation (MCTI) The SABIA beamline (Soft x-ray ABsorption spectroscopy and ImAging) will operate in a range of 100 to 2000 eV and will perform XPS, PEEM and XMCD techniques at SIRIUS/LNLS. Thermal management on these soft x-ray beamlines is particularly challenging due to the high heat loads. SABIA’s first mirror (M1) absorbs about 360 W, with a maximum power density of 0.52 W/mm², and a water-cooled mirror was designed to handle this substantial heat load. To prolong the mirror operation lifetime, often shortened on soft X-ray beamlines due to carbon deposition on the mirror optical surface, a procedure was adopted using high partial pressure of O₂ into the vacuum chamber during the commissioning phase. The internal mechanism was designed to be exactly constrained using folded leaf springs. It presents one degree of freedom for control and alignment: a rotation around the vertical axis with a motion range of about ±0.6 mrad, provided by a piezoelectric actuator and measured using vacuum compatible linear encoders. This work describes the SABIA’s M1 exactly constrained, high heat absorbent design, its safety particularities compared to SIRIUS typical mirrors, and validation tests results. |
|||
![]() |
Poster TUPYP008 [1.582 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP008 | ||
About • | Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 21 February 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPPP002 | The Status of the High-Dynamic DCM-Lite for Sirius/LNLS | controls, alignment, vacuum, synchrotron | 154 |
|
|||
Funding: Ministry of Science, Technology and Innovation (MCTI) Two new High-Dynamics Double Crystal Monochromators (HD-DCM-Lite) are under installation for QUATI (superbend) and SAPUCAIA (undulator) beamlines at Sirius. The HD-DCM-Lite portrays an updated version of Sirius LNLS HD-DCMs not only in terms of being a lighter equipment for sinusoidal scans speeds with even higher stability goals, but also bringing forward greater robustness for Sirius monochromators projects. It takes advantage of the experience gained from assembly and operation of the previous versions during the last years considering several work fronts, from the mechanics of the bench and cooling systems to FMEA, alignment procedures and control upgrades. In this work those challenges are depicted, and first offline results regarding thermal and dynamical aspects are presented. |
|||
![]() |
Poster WEPPP002 [7.970 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP002 | ||
About • | Received ※ 01 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 11 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPPP035 | Design and Fluid Dynamics Study of a Recoverable Helium Sample Environment System for Optimal Data Quality in the New Microfocus MX Beamline at the ALBA Synchrotron Light Source | experiment, detector, operation, cryogenics | 203 |
|
|||
XAIRA is the new microfocus MX beamline under construction at the ALBA Synchrotron Light Source. For its experiments, the quality will be optimized by enclosing all the end station elements, including the diffractometer in a helium chamber, so that the background due to air scattering is minimized and the beam is not attenuated in the low photon energy range, down to 4 keV. This novel type of chamber comes with new challenges from the point of view of stability control and operation in low pressure conditions while enabling the recovery of the consumed helium. In particular, it is planned to collect the helium gas with a purity > 99.5% and then to recover the gas at the ALBA Helium Liquefaction Plant. Besides, the circuit includes a dedicated branch to recirculate the helium used by the goniometer bearing at the diffractometer. This paper describes the fluid dynamic conceptual design of the Helium chamber and its gas circuit, as well as numerical results based on one-dimensional studies and Computational Fluid Dynamics (CFD). | |||
![]() |
Poster WEPPP035 [1.794 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP035 | ||
About • | Received ※ 24 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 18 June 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP049 | Realization of a Compact APPLE X Undulator | undulator, FEL, laser, GUI | 346 |
|
|||
The APPLE X is a compact elliptically polarizing undulator with a small round magnetic gap that provides full polarization control of synchrotron radiation at a lower cost and in less built-in space than comparable devices. The APPLE X will be the source for MAX IV’s potential future Soft X-ray (SXL) FEL. The mechanical design, finite element analysis optimization, assembly process, magnetic measurements, and shimming of a full-scale 2 m, 40 mm-period SmCo permanent magnet undulator are presented. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP049 | ||
About • | Received ※ 23 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 07 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||