Keyword: synchrotron-radiation
Paper Title Other Keywords Page
TUOAM05 Thermal-Deformation-Based X-Ray Active Optics Development in IHEP optics, synchrotron, vacuum, radiation 10
 
  • F.G. Yang, D.Z. Diao, H. Dong, J. Han, M. Li, W.F. Sheng, S.F. Wang, X.W. Zhang
    IHEP, Beijing, People’s Republic of China
  • L. Kang
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: National Natural Science Foundation of China (11505212, 11875059); Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019012).
Advanced light source require small wavefront distortion to maintain the quality of the X-ray beam. Active optical wavefront correction technology is a very important solution to solve the service problems of ultra-precise devices under such conditions. In this paper, we will report our recent progress on this active optics system development including surface metrology and mirror modulation. Based on the research of laser-heating-based thermal deformation modulation technology, this project proposes to modify the mirror surface of X-ray mirrors based on semiconductor microfabrication process, and modulate the local deformation of the mirror surface by electric heating to realize the surface shape correction /modulation of X-ray mirrors. Since the modulation unit acts directly on the reflective region of the mirror surface, it has a better surface shape correction capability than the conventional body deformation modulation. The solution also has the advantage of high efficiency and low cost.
*Yang F, Li M, Gao L, et al. Laser-heating-based active optics for synchrotron radiation applications[J]. Optics Letters, 2016, 41(12): 2815-2818.
 
slides icon Slides TUOAM05 [18.205 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUOAM05  
About • Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 01 February 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPYP055 Application of QXAFS in the Medium-Energy X-ray Absorption Spectroscopy experiment, synchrotron, data-acquisition, SRF 118
 
  • Y.H. Xia, J.F. Chang, S.Q. Chu, S.H. Liu, F.F. Yang, G.K. Zhang, H.Y. Zhang, J. Zhang, L. Zheng
    IHEP, Beijing, People’s Republic of China
 
  X-ray absorption fine-structure (XAFS) spectroscopy, including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), is an important experimental method at synchrotron radiation facilities, which has been applied in scientific research and industry applications. Traditional XAFS spectrum is obtained by controlling the rotation of the monochromator by a stepper driver, then measuring the absorption coefficient of each energy point. While in quick-scanning XAFS (QXAFS), the angle of the monochromator moves continuously and quickly, greatly reducing the spectral acquisition time. It has become a powerful tool to study in-situ dynamic processes. Currently QXAFS is mainly used in hard X-ray absorption spectroscopy beamlines of synchrotron radiation facilities, here we have developed a QXAFS system in the medium-energy X-ray beamlines, which will improve the function of XAFS beamlines and extend their capabilities to a wider user community.  
poster icon Poster TUPYP055 [0.689 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP055  
About • Received ※ 04 November 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 18 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBM05 Thermal Calculation and Testing of SLS 2.0 Crotch Absorbers simulation, storage-ring, GUI, synchrotron 145
 
  • X. Wang, B.S. Bugmann, R. Ganter, M. Maeher, C. Rosenberg, A. Weber
    PSI, Villigen PSI, Switzerland
 
  The storage ring of SLS2.0 based on a multibend achromat lattice will have the maximum electron energy of 2.7 GeV. The synchrotron radiation emitted by bending magnets, except for a small portion designated to beamlines, will be dissipated by crotch absorbers to protect downstream vacuum elements. SLS2.0 crotch absorbers are designed to have two water-cooled, toothed jaws made of Glidcop to dissipate a maximum heat power of 6 kW. Finite element analysis has been conducted to validate the thermal and mechanical strength of the absorbers’ mechanical design. A conjugate heat transfer (CHT) simulation, utilizing direct coupled solid and fluid zones with Computational Fluid Dynamics (CFD) software ANSYS Fluent, was performed to verify the water cooling concept. Furthermore, a prototype absorber underwent testing in an e-beam welding chamber, where the temperatures of the absorber and cooling water were measured and compared against calculated values. The test results not only confirmed the absorber’s ability to dissipate the specified heat load but also validated the thermal modelling methods. This presentation will focus on aspects of numerical simulation and thermal testing.  
slides icon Slides WEOBM05 [5.159 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEOBM05  
About • Received ※ 25 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 12 March 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP016 Mechanical Design of XRS & RIXS Multi-Functional Spectrometer at the High Energy Photon Source scattering, photon, synchrotron, radiation 178
 
  • J.C. Zhang, Z.Y. Guo, X. Jia, S.X. Jin, Z.N. Ou, W.F. Sheng, S. Tang, R.Z. Xu, W. Xu, Y.J. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The integration of an X-ray Raman spectroscopy (XRS) spectrometer and a Resonant Inelastic X-ray scattering (RIXS) spectrometer at HEPS is described. The XRS has 6 regular modular groups and 1 high resolution modular group. In total 90 pieces of spherically bent analyzer crystals are mounted in low vacuum chambers with pressure lower than 100Pa. On the other hand, the RIXS spectrometer possesses one spherically bent analyzer crystal configured in Rowland geometry whose diameter is changeable from 1m to 2m. The scattering X-ray photons transport mostly in helium chamber to reduce absorption by air. The RIXS and the high resolution module can be exchanged when needed. Six air feet are set under the granite plate to unload the weight when the heavy spectrometer is aligned. The natural frequency and statics of the main granite rack were analyzed and optimized to maintain high stability for the HEPS-ID33 beamline at the 4th generation source. A type of compact and cost-effective adjustment gadget for the crystals was designed and fabricated. Economic solutions in selection of motors and sensors and other aspects were adopted for building the large spectrometer like this.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP016  
About • Received ※ 02 November 2023 — Revised ※ 06 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 11 April 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP019 Coating Removal of Silicon-Based Mirror in Synchrotron Radiation by Soluble Underlayers optics, synchrotron, radiation, photon 181
 
  • Q. Hou, G.C. Chang, B. Ji, M. Li, S.P. Yue
    IHEP, People’s Republic of China
 
  Multilayer optics is widely used for the x-ray beam monochromatization, focusing, and collimation in synchrotron light source. However, the multilayer coatings might be damaged by the high heat loads, the poor film adhesion, the high internal stress, or the inadequate vacuum conditions. As a result, it is essential to develop a method to make the optical substrate reusable without compromising its quality. In our published work, we successfully prepared a W/B4C multilayer coating with a 2 nm Cr buffer layer on a small-sized Si wafer. The coating was stripped from the Si substrate by dissolving the Cr buffer layer using an etchant. After the etching process, the sample’s roughness was comparable to that of a brand-new substrate. We have since utilized this method to clean the multilayers on the surface of a 20 cm × 5 cm silicon-based mirror for High Energy Photon Source (HEPS). The surface roughness and shape were measured, and they reached the level of a brand-new mirror.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP019  
About • Received ※ 02 November 2023 — Revised ※ 04 November 2023 — Accepted ※ 06 November 2023 — Issued ※ 19 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP025 Application of CuCrZr in the Front-end of Shanghai Synchrotron Radiation Facility synchrotron, vacuum, radiation, SRF 187
 
  • S. Wu, Y. Li, J.N. Liu, J.W. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  Glidcop, oxygen free copper and other materials are mainly used in the Front-end of the Shanghai Synchrotron Radiation Facility(SSRF). CuCrZr material has high heat load capacity, high yield strength and tensile strength, good thermal conductivity and low vacuum outgassing rate. At present, it has been used as a heat sink material in the heat exchanger of nuclear reactors. In this paper, based on the previous process exploration, the Front-end absorber is made of CuCrZr material, and the technical scheme of integral processing of flange and absorber is adopted. The thermal stress and deformation of CuCrZr absorber are analyzed by finite element method, and the processing of CuCrZr absorber is completed, and it is applied to the SSRF BL04Ucanted front end. After a period of electron beam cleaning, vacuum and temperature tests were carried out under high thermal load power, and the characteristics of the material in practical use were analyzed, which proved that CuCrZr material can be used in SSRF under high heat load.  
poster icon Poster WEPPP025 [0.815 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP025  
About • Received ※ 01 November 2023 — Revised ※ 06 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP040 Experimental Methods Based on Grazing Incidence at the 1W1A Beamline of the Beijing Synchrotron Radiation Facility and Its Application inn Characterizing the Condensed State Structure of Conjugated Po experiment, operation, synchrotron, radiation 210
 
  • Y. Chen
    IHEP, Beijing, People’s Republic of China
  • P. Cheng, H.X. Li
    Sichuan University, Chengdu, People’s Republic of China
  • Y.C. Han
    CIAC, Changchun, People’s Republic of China
 
  The diffuse scattering experimental station of BSRF uses the dual focused monochromatic X-ray provided by 1W1A beam line to carry out structural research on crystal and film materials. This experimental station can carry out high-resolution XRD, XRR, GIXRD, GIWAXS/GISAXS and other experimental methods. GIWAXS/GISAXS is an important method for characterizing the condensed structure of conjugated polymers. We have upgraded and optimized the grazing incidence experimental method of the experimental station, and developed a grazing incidence remote rapid sampling platform. Greatly reduces testing time and enables remote online testing operations for users. Subsequently, we further established in-situ steam treatment, in-situ thermal annealing, in-situ drip coating, in-situ spin coating, in-situ scraping coating, and GISAXS testing platforms, enriching the line station grazing incidence testing methods.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP040  
About • Received ※ 30 October 2023 — Revised ※ 06 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 18 April 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP050 Quick scanning Channel-Cut crystal monochromator for millisecond time resolution EXAFS at HEPS controls, synchrotron, simulation, vacuum 229
 
  • Y.S. Lu, H. Liang, Z.K. Liu, D.S. Shen, Z. Sun, Y. Yang, S. Zhang, Y.S. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The design and capabilities of a Quick scanning Channel-Cut monochromator (QCCM) for HEPS are presented. The quick scan and step scan are realized by a torque motor directly driven Bragg axis, controlled by a servo controller. This design allows easy and remote control of the oscillation frequency and angular range, providing comprehensive control of QXAFS measure-ments. The cryogenically cooled Si (311) and Si(111) crystals, which extends the energy range from 4.8 keV-45 keV. The dynamic analysis verifies the rationality of the mechanical structure design. The device was fabri-cated and tested, results show an oscillation frequency up to 50Hz with a range of 0.8°, and a resolution of 0.2 arcsecond in step scan mode. This device demonstrates the feasibility of large range quick scan and step scan by a single servo control system.
Quick scanning Channel-Cut crystal monochromator
 
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP050  
About • Received ※ 02 November 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 08 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAM04 Overall Progress on Development of X-ray Optics Mechanical Systems at High Energy Photon Source (HEPS) optics, synchrotron, vacuum, radiation 252
 
  • S. Tang, Y.H. Dong, X.H. Kuang, M. Li, H. Liang, R.Y. Liao, L.H. Ma, Z.N. Ou, H. Qian, Z.R. Ren, W.F. Sheng, J. Wang, R.Z. Xu, H.H. Yu
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work is supported by the project of High Energy Photon Source (HEPS).
High Energy Photon Source (HEPS) regarded as a new 4th generation synchrotron radiation facility, is under construction in a virgin green field in Beijing, China. The X-ray optics/mirror mechanical systems (MMS) play an important role, which would be expected to be designed carefully and rigidly for the extremely stable performance requirement of HEPS. In addition, there are indeed big challenges due to so many types of mirror systems, such as white beam mirror (WBM), harmonic suppression mirror (HSM), combined deflecting mirror (CDM), bending mirror, Nano-KB, and the transfocator of Compound refractive lens (CRLs), etc. Therefore, overall progress on design and maunfacturing of the MMS is introduced, in which a promoting strategy and generic mirror mechanical system as a key technology is presented and developed for the project of HEPS. Furthermore, ultra-stable structucture, multi-DOF precision positioning, Eutectic Galium Indium (E-GaIn)-based vibration-decoupling watercooling, clamping, and bending have always been prior designs and considerations.
Shanzhi Tang, Weifan Sheng, Jianye Wang, et al, Overall progress on the design of mirror mechanical systems at High Energy Photon Source (HEPS), SRI2021, Hamburg Germany, 2022. POSTER
 
slides icon Slides THOAM04 [2.328 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THOAM04  
About • Received ※ 30 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 18 July 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPPP009 The Heat Load Calculation in the Grating-Based Beamline at Hefei Advanced Light Facility (HALF) synchrotron, undulator, optics, radiation 287
 
  • Z. Wang, J. Chen, X.W. Du, D. Feng, Q.P. Wang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: This work is supported by the Chinese Academy of Science (CAS) and the Anhui province government for key techniques R&D of Hefei diffraction limited light source.
For the 4th generation synchrotron radiation (SR) light source, the heat load causes severe thermal deformation on the beamline optics as the emittance is reaching at the physical limit. The precise calculation of heat load on the optical elements is important for the thermal analysis including cooling method and thermal deformation simulation. A heat load calculation code has been developed for grating based SR beamline optics, which consists of modules of SR source simulation, mirror reflectivity and grating efficiency. The calculation results has been checked with SRCalc results. This code has been used to calculate the heat load of the Test Beamline optics at Hefei Advanced Light Facility (HALF). The heat absorbed by the first three optical elements¿including a toroidal mirror, a plane mirror and a plane grating¿is calculated.
[1]R. Reininger. SRCalc (2001). Unpublished
[2]L. Rebuffi, et.el., J. Synchrotron Radiat. 27: 1108-1120 (2020).
[3]Z. Sun, et.al., The Innovation, 4 (6), 100514 (2023).
 
poster icon Poster THPPP009 [1.853 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP009  
About • Received ※ 25 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 09 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPPP014 A Special-Shaped Copper Block Cooling Method for White Beam Mirrors Under Ultra-High Heat Loads* synchrotron, radiation, controls, simulation 299
 
  • J.Y. Liu, H. Qin, X.X. Yan
    IASF, Shenzhen, Guangdong, People’s Republic of China
 
  In order to fulfil the more stringent requirements of op-tical figure accuracy for cooled X-Ray mirrors imposed to high heat loads, especially from advanced insertion de-vices in the diffraction limited storage rings (DLSR), investigations on the cooling system for white beam mirrors are conducted in this paper. A special-shaped copper block (SSCB) cooling method is proposed, using eutectic indium-gallium alloy as heat transfer medium. The SSCB cooling technology can keep a 550mm-length mirror slope error of 0.2 ¿rad (RMS) under 230 W absorp-tion heat power, showing great advantages in the accura-cy and flexibility for thermal deformation minimization when compared with the traditional ones.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP014  
About • Received ※ 25 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 06 November 2023 — Issued ※ 10 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPPP052 Design and Development of Coated Chamber for In-Air Insertion Devices vacuum, synchrotron, undulator, insertion-device 352
 
  • P.C. Wang, Y. Wang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • H. Dong, Y.S. Ma, Y.G. Wang, L. Zhang
    IHEP, Beijing, People’s Republic of China
  • J.M. Liu, S.M. Liu, X.Y. Sun
    DNSC, Dongguan, People’s Republic of China
  • B. Tan
    Institute of High Energy Physics, CAS, Guangdong, People’s Republic of China
  • B.L. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The insertion devices ¿ID¿is an important guarantee for further improving the performance of the light source to meet the needs of different users. For in-air ID (undulator, wiggler, etc.), the magnetic structure is in the air, and the vacuum chamber is in the middle of the magnetic structure to ensure the normal operation of the beam. In order to increase the magnetic field strength, the magnetic gap is generally relatively small. Factors such as small setting space, high precision, and low conductance all pose challenges to the design and processing of vacuum chamber. This paper introduces the development process of the vacuum chamber prototype of the coating type ID for the China ’s first diffraction-limited light source HEPS. The simultaneous analysis and vacuum pressure distribution calculation of the ID are carried out, and the NEG coating scheme is proposed as an more economical means to obtain ultra-high vacuum. The prototype NEG coating progress is introduced.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP052  
About • Received ※ 02 November 2023 — Revised ※ 10 November 2023 — Accepted ※ 12 November 2023 — Issued ※ 18 July 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)