Paper | Title | Other Keywords | Page |
---|---|---|---|
TUOBM05 | The Progress in Design, Preparation and Measurement of MLL for HEPS | focusing, target, electron, interface | 24 |
|
|||
Funding: This work was supported by the National Natural Science Foundation of China (Project12005250¿ The multilayer Laue lens (MLL) is a promising optical element with large numerical aperture and aspect ratio in synchrotron radiation facility. Two multilayers with 63(v)×43(h) ¿m2 aperture and focal spot size of 8.1(v)×8.1(h)nm2 at 10keV are fabricated by a 7-meter-long Laue lens deposition machine. Ultrafast laser etching, dicing and FIB are used to fabricate the multilayer into two-dimensional lenses meeting the requirement of diffraction dynamics. The multilayer grows flat without distortion and shows an amorphous structure characterized by TEM and SAED. The smallest accumulated layer position error is below ±5 nm in the whole area and the rms error is about 2.91nm by SEM and image processing. The focusing performance of MLL with actual film thickness is calculated by a method based on the Takagi¿Taupin description (TTD). The full width at half maximum(FWHM) of focus spot is 8.2×8.4 nm2 which is close to the theoretical result. |
|||
![]() |
Slides TUOBM05 [7.563 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUOBM05 | ||
About • | Received ※ 24 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 18 May 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPYP001 | Shining Light on Precision: Unraveling XBPMs at the Australian Synchrotron | synchrotron, feedback, monitoring, photon | 33 |
|
|||
At the Australian Synchrotron (AS), the need for nondestructive X-ray beam positioning monitors (XBPM) in the beamline front ends led to the development and installation of an in-house prototype using the photoelectric effect in 2021. This prototype served as a proof of concept and an initial step towards creating a customised solution for real time X-ray position monitoring. Of the new beamlines being installed at the AS, the High-Performance Macromolecular Crystallography (MX3) and Nanoprobe beamlines require XBPMs due to their small spot size and high stability requirements. However, a significant hurdle is the short distance from the source point to the XBPM location, resulting in an extremely restricted aperture to accurately monitor the beam position. Scaling down the photoelectric prototype to accommodate the available space has proven challenging, prompting us to explore alternative designs that utilize temperature-based methods to determine the beam position. This paper details insights made from investigating this alternative method and design. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP001 | ||
About • | Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 11 February 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPYP027 | A Subnanometer Linear Displacement Actuator | site, synchrotron, vacuum, experiment | 70 |
|
|||
With the development of synchrotron radiation technology, an actuator with sub-nanometer resolution, 100N driving force, and compatible with ultra-high vacuum environment is required. To achieve synchrotron radiation micro-nano focusing with adjustment resolution of sub-nanometer and high-precision rotation at the nano-arc level, most of the commercial piezoelectric actuators are difficult to meet the requirements of resolution and driving force at the same time. The flexure-based compound bridge-type hinge has the characteristic of amplifying or reducing the input displacement by a certain multiple, and can be used in an ultra-high vacuum environment. According to this characteristic, the bridge-type composite flexible hinge can be combined with commercial piezoelectric actuators, to design a new actuator with sub-nanometer resolution and a driving force of 100N. This poster mainly presents the principle of the new actuator, the design of the prototype and the preliminary test results of its resolution, stroke. | |||
![]() |
Poster TUPYP027 [3.140 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP027 | ||
About • | Received ※ 25 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 25 January 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPYP048 | A High Repetition Rate Free-electron Laser Shutter System | FEL, vacuum, diagnostics, electron | 101 |
|
|||
The Shanghai High repetition rate XFEL and Extreme light facility (SHINE) is the first high repetition rate XFEL in China. It is a powerful tool for scientific research. However, the high repetition rate XFEL has a high peak power and average power. The high peak power can damage optics and devices in the optical path in femtosecond. And the high average power will cause the distortion of optics. Consequently, it becomes crucial to protect optics and devices in the optical path. This shutter system is designed to protect the diagnostics and avoid thermal distortion and thermal damage. It can control the number of pulses and average power on the diagnostics. The time window of shutter can be as small as 10 ms. It has can absorb most of FEL power. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP048 | ||
About • | Received ※ 24 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 18 January 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPPP010 | The MID Instrument of European XFEL: Upgrades and Experimental Setups | detector, experiment, FEL, vacuum | 164 |
|
|||
It is given an insight on examples of Upgrades currently under development at the Material Imaging and Dynamics (MID) Instrument of the European XFEL GmbH [1], [2] in the X-ray Scattering System (XSIS) [3]: - The Multi-Environment Setups for a Multi-Detector System (MDS2) are the Setups designed around an additional detector chamber (MDS) to be used at the same time of the AGIPD detector [4], allowing it to cover simultaneously WAXS, SAXS and large field of view regions by using two area detectors, one close to the sample and a second one further away. - The Multi-Purpose Chamber 2 (MPC-2) represents the evolution of the current version and includes the upgraded design of both the exterior vessel and of some local optics assemblies in interior. Both these Upgrades will allow to improve the current MID Beamline performance capabilities and make entirely new experiments possible. - Reported are also Examples of some relevant Experimental Setups successfully designed and implemented going as well in the simultaneous multi-detector-use direction. | |||
![]() |
Poster WEPPP010 [5.728 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP010 | ||
About • | Received ※ 10 October 2023 — Revised ※ 06 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 08 January 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPPP013 | Mechanical Design and Integration of the SXP Scientific Instrument at the European XFEL | FEL, experiment, electron, vacuum | 172 |
|
|||
The European XFEL provides femtosecond X-ray pulses with a MHz repetition rate in an extended photon energy range from 0.3 to 30 keV. Soft X-rays between 0.3 and 3 keV are produced in the SASE3 undulator system, enabling both spectroscopy and coherent diffraction imaging of atoms, molecules, clusters, ions and solids. The high repetition rate opens the possibility to perform femtosecond time-resolved photoelectron spectroscopy (TR-XPES) on solids. This technique allows the simultaneous understanding of the evolution of the electronic, chemical and atomic structure of solids upon an ultrafast excitation. The realization with soft X-rays requires the use of MHz FELs. In this contribution, we present the mechanical design and experimental realization of the SXP instrument. The main technical developments of the instrument components and the TR-XPES experimental setup are described. | |||
![]() |
Poster WEPPP013 [1.253 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP013 | ||
About • | Received ※ 24 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 07 November 2023 — Issued ※ 12 March 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP012 | Shape Optimization Design of Monochromator Pre-mirror in FEL-1 at S{3}FEL | FEL, synchrotron, free-electron-laser, electron | 293 |
|
|||
For the monochromator pre-mirror in FEL-1 at S3FEL, the deformation induced by high heat load result in severe effects on the beam quality during its off-axis rotation. To meet the pre-mirror shape error requirement for X-ray coherent transport, an integra-tion of passive cooling and active heating systems for thermal management of the monochromator pre-mirror has been proposed, developed, and modelled. An ac-tive heating system with multiple electric heaters is adopted to compensate for the pre-mirror shape fur-ther. Finally, using MHCKF model, the optimization of multiple heat fluxes generated by all electric heaters was accomplished. The results show that the thermal management using passive cooling and active heat schemes is effective to obtain high-precision surface shape for the pre-mirror. | |||
![]() |
Poster THPPP012 [0.772 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP012 | ||
About • | Received ※ 24 October 2023 — Revised ※ 06 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 18 November 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP020 | The Pre-alignment of High Energy Photon Source Storage Ring | alignment, target, storage-ring, real-time | 310 |
|
|||
In order to achieve 10 micrometer pre-alignment accuracy of storage ring in transverse and vertical, four laser trackers were used for set up a four-station multilateration measurement system. Experiment results show that the relative displacement measurement accuracy is better than 3 micrometer in 3-meter workpiece range, which can satisfy the real-time position feedback accuracy of the magnets in the process of ultra-high-precision pre-alignment. After two years of research and development, three pre-alignment standard workstations have been established. And the laser multilateration measurement method is adopted to the pre-alignment of the three, five and eight magnet girders in the storage ring of HEPS. Currently, 240 out of 288 girders have been pre-aligned after half a year of work. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP020 | ||
About • | Received ※ 07 November 2023 — Revised ※ 08 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 03 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP049 | Realization of a Compact APPLE X Undulator | undulator, MMI, FEL, GUI | 346 |
|
|||
The APPLE X is a compact elliptically polarizing undulator with a small round magnetic gap that provides full polarization control of synchrotron radiation at a lower cost and in less built-in space than comparable devices. The APPLE X will be the source for MAX IV’s potential future Soft X-ray (SXL) FEL. The mechanical design, finite element analysis optimization, assembly process, magnetic measurements, and shimming of a full-scale 2 m, 40 mm-period SmCo permanent magnet undulator are presented. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP049 | ||
About • | Received ※ 23 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 07 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPPP050 | Overview of the Unified Undulator Solution for the PolFEL Project | undulator, FEL, electron, free-electron-laser | 349 |
|
|||
The PolFEL project, consisting of building a free electron laser, will be the first in Poland and one of the several sources in the world of coherent, tuneable electromagnetic radiation within the wide spectrum range from THz to VUV, emitted in pulses from femtoseconds to picoseconds, with high impulse power or high average power. The research infrastructure will include a free electron laser (FEL), a photocathode testing laboratory, end-stations, and laboratories necessary for the operation of the apparatus, and laboratories for users from the beamlines. The main FEL accelerator will consist of three independent branches, which will include chains of undulators adjusted to three different energy ranges: VUV, IR and THZ. The main challenge was the unification of the final undulator solution, so that it could be applied to all three branches. The main goal of this approach was to save time, costs, human and material resources. The overview of issues and solutions related to the construction of undulators for the PolFEL project, and the challenges that had to be fulfilled to reach the final design, is presented in this publication. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP050 | ||
About • | Received ※ 24 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 25 March 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||