The 12th International Conference on Mechanical **MEDSI 2023 Engineering Design of Synchrotron Radiation Equipment and Instrumentation**

November 06 - 10, 2023 · Beijing, China

HOST:

Exactly Constrained, High Heat Load Design for SABIA'S First Mirror*

V. B. Zilli⁺, B. A. Francisco, G.G. Basílio, L. M. Volpe, A.C. Pinto, V. S. Ynamassu, R.G. Oliveira, G.R.B. Ferreira, F. A. Del Nero, G. L. M. P. Rodrigues, R.R. Geraldes, M.E.O.A Gardingo, J.C. Cezar, C. Ambrosio. LNLS, Campinas, Brazil

Abstract The SABIA beamline (Soft x-ray ABsorption spectroscopy and ImAging) will operate in a range of 100 to 2000 eV and will perform XPS, PEEM and XMCD techniques at SIRIUS/LNLS. Thermal management on these soft x-ray beamlines is particularly challenging due to the high heat loads. SABIA's first mirror (M1) absorbs about 360 W, with a maximum power density of 0.52W/mm², and a water-cooled mirror was designed to handle this substantial heat load. To prolong the mirror operation lifetime, often shortened on soft X-ray beamlines due to carbon deposition on the mirror optical surface, a procedure was adopted using high partial pressure of O2 into the vacuum chamber during the commissioning phase. The internal mechanism was designed to be exactly constrained using folded leaf springs. It presents one degree of freedom for control and alignment: a rotation around the vertical axis with a motion range of about ±0.6 mrad, provided by a piezoelectric actuator and measured using vacuum compatible linear encoders. This work describes the SABIA's M1 exactly constrained, high heat absorbent design, its safety particularities compared to SIRIUS typical mirrors, and validation

tests results.

Optimization Methodology Flexible elements nitial sketch an System selection and requirements models positioning No Performance verification Yes Meet the (mechanical quirements and thermal) Optimization Improved Yes mechanically and using Ansys DesignXplorer thermally No Water Hose Water + low vacuum inlet By utilizing a flexible water hose allowed us to maintain continuous mirror rotation around the vertical axis; The hose is safeguarded by a vacuum enclosure; Pressure monitoring to detect leaks, ensuring electronics and vacuum protection;

Contical Face Deformation Measurements

Optical face measured using a Fizeau interferometer.

Heigh-error before and after the glue dried out.

The major component of the optical surface deformation is the thermal deformation;

Water flux optimized;

- Encoders were used to characterize both the Def motion range and the mechanical stability;
- High partial pressure aas on commissioning on an attempt to extend the mirror lifetime.

Final deformation of the mirror.

stiff actuator and FLS we developed a highly linear and stable mechanism. To protect both vacuum levels and electronics used, a vacuum guard was designed to encapsulate the water hoses used to cool the mirror down during operation.

As it is complex to determine the water flow induced vibration contribution on stability on the water hoses, tests were performed. It shows that water flow is responsible on over 35% of the instabilities. Yet this represent only 2nm increase on linear instabilities when converted to rotation it is about 49nrad.

By using a partial pressure of oxygen gas onto the vacuum chamber we observed possible reactions with carbon-based structures on an attempt to prolong the mirror lifetime, but we need more testing to be certain. In the forthcoming months, the SABIA beamline shall end its technical commissioning and entered the scientific commissioning.

& Acknowledgements

The authors would like to gratefully acknowledge the funding by the Brazilian Ministry of Science, Technology and Innovation, the contributions of the LNLS team and partners.

RGA monitoring during the M1 commissioning phase. The blue lines indicate the shutter opening, the red its closing.

[1] Perna, A. V. et al. "The HD-DCM-Lite: A High-Dynamic DCM with Extended Scanning Capabilities for Sirius/LNLS Beamlines" in Proc. of MEDSI 2020. doi: https://doi.org/10.18429/JACoW-MEDSI2020-TUPC11

[2] R. R. Geraldes. Et al. "THE DESIGN OF EXACTLY-CONSTRAINED X-RAY MIRROR SYSTEMS FOR SIRIUS" in Proc. of MEDSI 2018. doi:10.18429/JACoW-MEDSI2018-WEOAMA04

[3] DiGennaro, R. et al "A water-cooled mirror system for synchrotron radiation". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 266, Issues 1–3, 1988, Pages 498-506, ISSN 0168-9002. https://doi.org/10.1016/0168-9002(88)90437-8. [4] Insync Optics products - http://www.insyncoptics.com/products.html

[5] Geraldes, R. R. et al. "Granite benches for sirius x-ray optical systems", in Proc. Of MEDSI 2018. doi:10.18429/JACoW-MEDSI2018-THPH12

[6] GmbH, P. I. (n.d.). N-470 PiezoMike Linear Actuator. Physikinstrumente. https://www.physikinstrumente.com/en/products/linear-actuators/piezomike-for-long-termstability/n-470-piezomike-linear-actuator-1000140

[7] Plc, R. (n.d.). Renishaw: RESOLUTETM UHV com escala linear RTLA30. Renishaw. https://www.renishaw.com.br/pt/sistema-de-encoder-absoluto-resolute-uhv-comescala-linear-rtla30--18333

[8] G. Rovigatti, H. Geraissate, R. Leao. "Alignment strategies and first results on Sirius beamlines" in Proc of MEDSI 2020. doi:10.18429/JACoW-MEDSI2020-THOA03 [9] F. R. Lena. "Determinação de métodos de colagem com resinas epóxi para fixação de espelhos para raios X em linhas de luz da fonte de radiação síncrotron Sirius". doi: 10.13140/RG.2.2.28802.66248

[10] V.B. Zilli et. al. "Installation and Commissioning of the Exactly-Constrained X-Ray Mirror Systems for Sirius/LNLS" in Proc of MEDSI2020. DOI: 10.18429/JACoW MEDSI2020-MOPB06

[11] EP42HT-2LO Product Information | MasterBond.com. (n.d.). https://www.masterbond.com/tds/ep42ht-2lo

[12] Motion Controllers - Faraday Motion Control. (n.d.). Faraday Motion Controls. https://www.faradaymotioncontrols.co.uk/motion-controllers/

BRAZILIAN GOVERNMENT

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

UNITING AND REBUILDING

