

A new X-ray facility for the characterization of the

newATHENA mirror modules at the ALBA

Synchrotron

Antonio Carballedo Costa 07 / 11 / 2023

- ATHENA X-Ray Observatory
- Beamline Layout and General description
- Monochromator
- Sample Environment
- Detector Tower
- Conclusions

NewATHENA X-ray Telescope

- Open observatory to address fundamental questions about energetic objects.
- Mission started at 2014, expected to be ready by 2037
- Powerful X-ray observatory unprecedented combination of collecting area, survey capabilities and energy resolution.
- 14,5 m long, 7 tones

NewATHENA X-ray Optics

MINERVA Beamline

- Based on **XPBF 2.0** (PTB)
- Source: Bending magnet
- Operated under <u>UHV</u> and <u>HV</u>.
- Monochromator, unique optics (Toroidal mirror
 → Collimated beam at 1 KeV)
- Sample Environment in a Cleanroom (30 m²)
- Detector Tower

Technical Specifications

- Accuracy in distance from MM to Detector better than 50 μm.
- Positioning and stability of MM better than 1 μm and 1 arcsec

GENERAL BEAMLINE DESCRIPTION

MONOCHROMATOR

MIRROR ASSEMBLY

- Toroidal mirror (SESO) with Multilayer (AXO DRESDEN)
- Select photons at **1KeV**. Collimated beam
- Water cooling by copper cooling pads
- Kinematical mount as a mirror base to manual alignment

MONOCHROMATOR

MOTION STAGES

- Motorized stages: X-ray incidence and linear translation normal to surface
- Based on stepper motors and precision ball linear guides
- Feedback control by means of absolute encoders

MONOCHROMATOR

Pitch Rotation

Parameter	Performance
Stroke	≥(± 12 mrad)
Motion Resolution	≤0.5 µrad
Repeatability (open Loop)	≤1 µrad
Backlash (open Loop)	≤20 µrad

Linear Translation (normal to mirror surface)

Parameter	Performance
Stroke	≥(± 5 mm)
Motion Resolution	≤0.4 μm
Repeatability (open Loop)	≤0,5 μm
Backlash (open Loop)	≤6,5 μm
Linearity (open Loop)	≤1,2 µm

11

- 30 m² cleanroom
- Where the mirror modules are aligned and characterized

SAMPLE ENVIRONMENT

Vacuum Chamber

Required vacuum level

10⁻⁵ mbar

SAMPLE ENVIRONMENT

Quick access doors

Manipulation of Mirror Modules

Two autocollimators \rightarrow Constant knowledge of the orientation

Results on Motion – Vertical Stage

Results on Motion – Horizontal Stage

Results on Motion – Hexapod Vertical

Results on Motion – Hexapod Horizontal

Results on stability

20

Results on stability

Vertical linear stage $\pm 30~{
m mm}$

Detector Tower

- Air cooled **sCMOS detector** (36,7 x 36,7 mm²)
- Focus at **12 m** from sample (+/- **500 mm**)
- From **0** ° to **8** ° angular movement
- Transversal movement of +/- 100 mm
- Mechanics based on stepper motors, high precision spindles and ball linear guides
- Two massive granite blocks as support
- Feedback from absolute encoders
- Cantilever design to have an **open view** for Laser Tracker

Detector Tower

- Air cooled **sCMOS detector** (36,7 x 36,7 mm²)
- Focus at **12 m** from sample (+/- **500 mm**)
- From **0** ° to **8** ° angular movement
- Transversal movement of +/- 100 mm
- Mechanics based on stepper motors, high precision spindles and ball linear guides
- Two massive granite blocks as support
- Feedback from absolute encoders
- Cantilever design to have an **open view** for Laser Tracker

Detector Tower

Results on stability

- New X-ray beamline under commissioning at ALBA
- **Based on** existing beamline **XPBF2.0** at **PTB**
- **Different approaches** on the design of mechanics, aiming to **improve performances**
- Various tests performed, **favorable results** in terms of **stability** and **repeatability**
- Some unexpected issues to be addressed
- A lot of commissioning work remaining
- Operational readiness for Mirror Module mass production by 2027

ACKNOWLEDGEMENTS

- Dominique Heinis
- Marc Sanchez
- Alejandro Sánchez Grueso
- Núria Valls Vidal
- Carles Colldelram Peroliu
- Joan Casas Bullich
- Josep Nicolàs Roman
- Guifré Cuní Soler

Thanks to...

- Alejandro Crisol Ariño
- Nahikari González
- Alberto Ruz Bedmar
- Borja Revuelta Fernández,
- Albert Ollé Sabaté
- Albert Van Eeckhout Alsinet
- Antonio Camps Jiménez
- Jorge Villanueva Cuenda
- Núria Martí Soler
- Carolina Gutiérrez Neira
- José Armando Ferrer García
- Sergi Pusó Gallart
- Cristina Orozco Roura
- Jordi Marcos Ruzafa
- Raquel Monge García
- María José García Fusté
- Marta Llonch Burgos
- Jon Ladrera Fernández

COSINE measurement systems

- Evelyn Handick - Dieter Skroblin

 - Michael Krumrey
 - Giuseppe Vacanti
 - Enrico Hauser
 - Max Collon
- Ivo Ferreira **e**esa - Marcos Bavdaz

THANKS!

