Keyword: cryogenics
Paper Title Other Keywords Page
TUOAM04 New Developments and Status of XAIRA, the New Microfocus MX Beamline at the ALBA Synchrotron detector, optics, synchrotron, experiment 5
 
  • N. González, C. Colldelram, A. Crisol, D. Garriga, J. Juanhuix, J. Nicolàs, M. Quispe, I. Šics
    ALBA-CELLS, Cerdanyola del Vallès, Spain
 
  The new BL06-XAIRA microfocus macromolecular crystallography beamline at ALBA synchrotron is currently under commissioning and foreseen to enter into user operation in 2024. The aim of XAIRA is to provide a 4-14 keV, stable, high flux beam, focused to 3×1 µm2 FWHM. The beamline includes a novel monochromator design combining a cryocooled Si(111) channel-cut and a double multilayer diffracting optics for high stability and high flux; and new mirror benders with dynamical thermal bump and figure error correctors. In order to reduce X-ray parasitic scattering with air and maximize the photon flux, the entire end station, including sample environment, cryostream and detector, is enclosed in a helium chamber. The sub-100nm SoC diffractometer, based on a unique helium bearing goniometer also compatible with air, is designed to support fast oscillation experiments, raster scans and helical scans while allowing a tight sample to detector distance. The beamline is also equipped with a double on-axis visualization system for sample imaging at sub-micron resolutions. The general status of the beamline is presented here with particular detail on the in-house fully developed end station design.  
slides icon Slides TUOAM04 [6.526 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUOAM04  
About • Received ※ 27 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 15 May 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBM02 SAPOTI - The New Cryogenic Nanoprobe for the CARNAÚBA Beamline at Sirius/LNLS synchrotron, controls, vacuum, focusing 19
 
  • R.R. Geraldes, G.G. Basilio, D.N.A. Cintra, V.B. Falchetto, D. Galante, R.C. Gomes, A.Y. Horita, L.M. Kofukuda, F.R. Lena, M.B. Machado, Y.A. Marino, E.O. Pereira, P.P.R. Proença, C.A. Pérez, M.H. Siqueira da Silva, A.P.S. Sotero, V.C. Teixeira, H.C.N. Tolentino
    LNLS, Campinas, Brazil
 
  Funding: Brazilian Ministry of Science, Technology and Innovation (MCTI)
SAPOTI will be the second nanoprobe to be installed at the CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) beamline at the 4th-generation light source Sirius at the Brazilian Synchrotron Light Laboratory (LNLS). Working in the energy range from 2.05 to 15 keV, it has been designed for simultaneous multi-analytical X-ray techniques, including absorption, diffraction, spectroscopy, fluorescence and luminescence, and imaging in 2D and 3D. Highly-stable fully-coherent beam with monochromatic flux up to 1011ph/s/100mA-/0.01%BW and size between 35 and 140 nm is expected with an achromatic KB (Kirkpatrick-Baez) focusing optics, whereas a new in-vacuum high-dynamic cryogenic sample stage has been developed aiming at single-nanometer-resolution images via high-performance 2D mapping and tomography. This work reviews and updates the entire high-performance mechatronic design and architecture of the station, as well as the integration results of its several modules, including automation, thermal management, dynamic performance, and positioning and scanning capabilities. Commissioning at the beamline is expected in early 2024.
 
slides icon Slides TUOBM02 [45.929 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUOBM02  
About • Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 11 February 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPYP004 A Setup for the Evaluation of Thermal Contact Resistance at Cryogenic Temperatures Under Controlled Pressure Rates radiation, vacuum, interface, alignment 37
 
  • B.A. Francisco, D.Y. Kakizaki, M. Saveri Silva, W.H. Wilendorf, V.B. Zilli, G.S. de Albuquerque
    LNLS, Campinas, Brazil
  • V.C. Kuriyama
    CNPEM, Campinas, SP, Brazil
  • A. Lopes Ribeiro
    Federal University of Uberlandia, Uberlândia, M.G., Brazil
  • J.H. dos Santos
    IF-UFRGS, Porto Alegre, Brazil
 
  The design of optical elements compass different development areas, such as optics, structures and dynamics, thermal, and control. In particular, the thermal designs of mirrors aim to minimize deformations, whose usual requirements are around 5 nm RMS and slope errors in the order of 150 nrad RMS. One of the main sources of uncertainties in thermal designs is the inconsistency in values of thermal contact resistances (TCR) found in the literature. A device based on the ASTM D5470 standard was proposed and designed to measure the TCR among materials commonly used in mirror systems. Precision engineering design tools were used to deal with the challenges related to the operation at cryogenic temperatures (145 K) and under several pressures rates (1~10 MPa) whilst ensuring the alignment between the specimens. We observed using indium as Thermal Interface Material reduced the TCR in 10~42,2% for SS316/Cu contacts, and 31~81% for Al/Cu. Upon analyzing the measurements, we identified some areas for improvements in the equipment, such as mitigating radiation and improving the heat flow in the cold part of the system that were implemented for the upgraded version.  
poster icon Poster TUPYP004 [2.549 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP004  
About • Received ※ 02 November 2023 — Revised ※ 06 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 22 April 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPYP005 On the Performance of Cryogenic Cooling Systems for Optical Elements at Sirius/LNLS controls, operation, optics, ECR 40
 
  • B.A. Francisco, M.P. Calcanha, R.R. Geraldes, L.M. Kofukuda, G.P. Lima, M. Saveri Silva, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Sirius’ long beamlines are equipped with cryogenic cooled optics to take advantage of the Silicon thermal diffusivity and expansion at those temperatures, contributing to the preservation of the beam profile. A series of improvements was evaluated from the experience in the employment of such cooling systems during the early years of operation. The main topic refers to the prevention of instabilities in the temperature of the optics due to variations in the liquid nitrogen cylinder pressure, refill automation or progressive variations of the convective coefficient into the cryostat. This work discusses the performance of these systems after optimizing the pressure of the vessels and their control logics, the effectiveness of occasional purges, cool down techniques, and presents the monitoring interface and interlock architecture. Moreover, we present the reached solution for achieving higher beam stability, considering liquid nitrogen flow active control (commercial and in-house). Also propose the approach for the future 350 mA operation, including different cooling mechanisms.
 
poster icon Poster TUPYP005 [1.250 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP005  
About • Received ※ 24 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 22 November 2023 — Issued ※ 18 July 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPYP018 Design and Improvements of a Cryo-Cooled Horizontal Diffracting Double Crystal Monochromator for HEPS vacuum, cavity, photon, ISOL 55
 
  • Y.S. Zhang, H. Liang, Y.S. Lu, D.S. Shen, L. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Horizontal diffracting double crystal monochromator(HDCM) are usually used in a 4th generation light source beamline due to the larger source size in the horizontal direction. This paper introduces the mechanical design and optimization of a HDCM for Low-dimension Structure Probe Beamline of HEPS. In order to achieve the high stability requirement of 50nrad RMS, the structural design is optimized and modal improved through FEA. In order to meet the requirement of a total crystal slope error below 0.3¿rad, FEA optimizations of the clamping for first and second crystal are carried out. The vacuum chamber is optimized to become more compact, improving the maintainability. Fabrication of the HDCM is under way. The results show that the design is capable of guarantee the required surface slope error, stability, and adjustment requirements.  
poster icon Poster TUPYP018 [1.172 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP018  
About • Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 11 May 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPYP030 The Design of High Stability Double Crystal Monochromator for HALF synchrotron, vacuum, optics, radiation 76
 
  • Z.L. Xu, J. Chen, X.W. Du, Y. Peng, Q.P. Wang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  HALF is a fourth-generation synchrotron light source with a number of state-of-the-art beamlines. Naturally, the new 4th generation machines, with their small emittances, start to bring higher stability performance requirements. In response to these problems, an concept of a high stability DCM (Double Crystal Monochromator) with angular range between 14 and 81 degrees (equivalent to 2 to 8 keV with Si(111)) has been developed at the National Synchrotron Radiation Laboratory. This poster gives an overview of the DCM prototype project including specifications, Mechanical design, heat load management and stability consideration.  
poster icon Poster TUPYP030 [1.221 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP030  
About • Received ※ 25 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 24 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAM02 A Vacuum Aspirated Cryo Cooling System (VACCS) controls, vacuum, synchrotron, optics 121
 
  • G.M.A. Duller, D.L. Magrath, M. Nagy, B. Olafsson
    DLS, Oxfordshire, United Kingdom
 
  The use of liquid nitrogen for cooling of synchrotron equipment is widespread. The cryogenic sub-coolers commonly employed come with some significant drawbacks such as cost, complexity, stiffness of distribution lines, and vibration induced by pressure variations. The typical sub-cooler is capable of handling 2-3kW of absorbed power whilst many optics require no more than 50-150W of cooling. We present a Vacuum Aspirated Cryo-cooling System (VACCS) which overcomes many of these disadvantages and which allows cryo-cooling to be implemented more widely. The VACCS system uses a vacuum, generated with no moving parts, to draw LN2 through a heat exchanger. Thus the system does not have to be pressure rated. We describe our designs for highly flexible distribution lines. A simple control system offers variable temperature at the heat exchanger by varying the flowrate of LN2. A system is installed at Diamond which allows the independent control of three zones. A test rig has demonstrated cooling capacity in excess of 100W for a monochromator crystal assembly and controlled temperatures -194¿-120C.  
slides icon Slides WEOAM02 [21.578 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEOAM02  
About • Received ※ 31 October 2023 — Revised ※ 27 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 08 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP034 ALBA Experimental Set Up for the Evaluation of Thermal Contact Conductance Under Cryogenic and Vacuum Conditions experiment, interface, vacuum, synchrotron 199
 
  • O. Traver Ramos, J.J. Casas, C. Colldelram, J.L. Frieiro, B. Molas, M. Quispe, M. Sanchez
    ALBA-CELLS, Cerdanyola del Vallès, Spain
 
  The Thermal Contact Conductance (TCC) between two surfaces plays a very important role in the design of components in particle accelerators. The TCC depends on many variables such as surface finish, type of material, pressure, temperature, etc. As a general rule, the TCC comes from experimental results reported in the specialized literature. However, it is not always possible to find this information, especially if components are designed to operate in cryogenic and vacuum conditions, for this reason, assumptions are made that render results with high uncertainty. In this context, ALBA has designed an experimental set up to carry out axial heat flow steady state experiments for the evaluation of TCC under vacuum and cryogenic conditions. The minimum pressure achievable in the set up will be 1e-5 mbar while the temperature may vary between 80 and 300 K. The results will provide inputs to further optimize ALBA designs, including ALBA II, our ongoing fourth-generation synchrotron upgrade project. This paper describes the experimental setup, the thermal and mechanical design considerations and experimental validation tests.  
poster icon Poster WEPPP034 [0.616 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP034  
About • Received ※ 30 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 05 April 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP035 Design and Fluid Dynamics Study of a Recoverable Helium Sample Environment System for Optimal Data Quality in the New Microfocus MX Beamline at the ALBA Synchrotron Light Source experiment, detector, operation, MMI 203
 
  • M. Quispe, J.J. Casas, C. Colldelram, D. Garriga, N. González, J. Juanhuix, J. Nicolàs, Y. Nikitin
    ALBA-CELLS, Cerdanyola del Vallès, Spain
  • M. Rabasa
    ESEIAAT, Terrassa, Spain
 
  XAIRA is the new microfocus MX beamline under construction at the ALBA Synchrotron Light Source. For its experiments, the quality will be optimized by enclosing all the end station elements, including the diffractometer in a helium chamber, so that the background due to air scattering is minimized and the beam is not attenuated in the low photon energy range, down to 4 keV. This novel type of chamber comes with new challenges from the point of view of stability control and operation in low pressure conditions while enabling the recovery of the consumed helium. In particular, it is planned to collect the helium gas with a purity > 99.5% and then to recover the gas at the ALBA Helium Liquefaction Plant. Besides, the circuit includes a dedicated branch to recirculate the helium used by the goniometer bearing at the diffractometer. This paper describes the fluid dynamic conceptual design of the Helium chamber and its gas circuit, as well as numerical results based on one-dimensional studies and Computational Fluid Dynamics (CFD).  
poster icon Poster WEPPP035 [1.794 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP035  
About • Received ※ 24 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 18 June 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPPP002 Analysis of Hazards in a Flammable Gas Experiment and Development of a Testing Regime for a Polypropylene Vacuum Window experiment, Windows, vacuum, operation 270
 
  • S.O. Bundrock, B. Billinghurst, X.E. Li, D.M. Smith
    CLS, Saskatoon, Saskatchewan, Canada
 
  Far Infrared Spectroscopy (Far-IR) is a bend magnet infrared beamline at the Canadian Light Source. The beamline utilizes a gas cell loaded with experimental gas which light is bounced through and a spectrometer to measure the absorption of the gas. For an experiment at Far-IR utilizing methane and nitrogen at 100K temperatures, issues with icing and inconsistent absorption gradients were noted at the Polymethylpentene Rigid Plastic (TPX TM) window separating the cell filled with the flammable gas mixture from the vacuum of the spectrometer. The possibility of replacing the existing windows with new 50-micron thick polypropylene windows was investigated. Material properties were not available for polypropylene at the operating temperature of the experiment. Due to the hazardous nature of the gas being held back a hazard analysis was carried out to identify potential risks and mitigations for the change. Additionally, with material properties unavailable, a testing regime was established to ensure the polypropylene could survive in the experimental environment. The experiment was successfully completed using the modified window assemblies.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP002  
About • Received ※ 19 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 07 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPPP010 Mechanical Analysis and Tests of Austenitic Stainless Steel Bolts for Beamline Flange Connection FEL, vacuum, experiment, SRF 290
 
  • T.T. Zhen, H.X. Deng, R. Deng, F. Gao, L.J. Lu, S. Sun
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  Cryogenic tests of 1.3GHz superconducting accelerator cryomodule for the Shanghai Hard X-ray Free Electron Laser Installation Project(SHINE) are in progress. For better performance, a study of mechanical analysis and tests of austenitic stainless steel bolts for beamline flange connection has been done in preliminary work. In order to satisfy the residual magnetism and strength, high-strength austenitic stainless steel bolts are selected. For higher sealing performance, the torque coefficient is determined by compression test, the lower limit of yield of the bolts is obtained by tensile test, then the maximum torque applied to the bolts under real working conditions can be obtained according to the relationship between preload and torque. A finite element model is established to get the deformation curve of the gasket, and the measured results of gasket thickness are compared to ensure the reliability of the simulation. The deformation curve of the gasket is used to calculate the change of compression force under the temperature cycling load(cool down and warm-up). Finally, the results of residual magnetism show that the bolts have a negligible effect on magnetic field.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP010  
About • Received ※ 25 October 2023 — Revised ※ 06 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 18 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)