Keyword: framework
Paper Title Other Keywords Page
MOPAB362 Atomistic Modeling of the Coupling Between Electric Fields and Bulk Plastic Deformation in Rf Structures simulation, experiment, coupling, feedback 1125
 
  • S. Bagchi, D. Perez
    LANL, Los Alamos, New Mexico, USA
 
  Funding: LANL-LDRD
A notable bottleneck in achieving high-gradient RF technology is dictated by the onset of RF breakdown. While bulk mechanical properties are known to significantly affect breakdown propensity, the underlying mechanisms coupling RF fields to bulk plastic deformation in experimentally relevant thermo-electrical loading conditions remain to be identified at the atomic scale. Here, we present results of large-scale molecular dynamics simulations (MD) to investigate possible modes of coupling. We consider the activation of Frank-Read (FR) sources, which leads to dislocation multiplication, under the action of bi-axial thermal stresses and surface electric-field. With a charge-equilibration formalism incorporated in a classical MD model, we show that a surface electric field acting on an either preexisting or dislocation-induced surface step, can generate a long-range resolved shear stress field inside the bulk of the sample. We investigate the feedback between step growth following dislocation emission and subsequent activations of FR sources and discuss the regimes of critical length-scales and densities of dislocations, where such a mechanism could promote RF breakdown precursors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB362  
About • paper received ※ 19 May 2021       paper accepted ※ 10 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXA05 Measurements of Beam-Beam Interactions in Gear-Changing Collisions in DESIREE experiment, collider, beam-beam-effects, HOM 1283
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
  • A. Källberg, A. Simonsson
    Stockholm University, Stockholm, Sweden
 
  Funding: Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a license to publish or reproduce this manuscript.
In this work, we perform measurements on the interactions of colliding beams in a gear-changing system. Gear-changing was first demonstrated in DESIREE in May of 2020 and showed several promising avenues to measure beam-beam effects. DESIREE has a unique collision scheme where the beams are moving in the same direction, which provides for unique interactions. This experiment used a 4 on 3 gear changing system with one bucket in each ring left empty, this allows us to see the bunch profile while undergoing collisions. We then measured the bunch length over time and used a Fourier transform to extract longitudinal evolution data and compared it to baseline data of uncollided beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUXA05  
About • paper received ※ 21 May 2021       paper accepted ※ 14 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB206 Matching of Intense Beam in Six-Dimensional Phase Space space-charge, emittance, focusing, quadrupole 1897
 
  • Y.K. Batygin
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by US DOE under contract 89233218CNA000001
Beam matching is a common technique that is routinely employed in accelerator design to minimize beam losses. Despite being widely used, a full theoretical understanding of beam matching in 6D phase space remains elusive. Here, we present an analytical treatment of 6D beam matching of a high-intensity beam onto an RF structure. We begin our analysis within the framework of a linear model, and apply the averaging method to attain a matched solution for a set of 3D beam envelope equations. We then consider the nonlinear regime, where the beam size is comparable with the separatrix size. Starting with a Hamiltonian analysis in 6D phase space, we attain a self-consistent beam profile and show that it is significantly different from the commonly used ellipsoidal shape. Subsequently, we analyze the special case of equilibrium with equal space charge depression between all degrees of freedom. A comparison of beam dynamics for equipartitioned, equal space charge depression, and equal emittances beams is given.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB206  
About • paper received ※ 14 May 2021       paper accepted ※ 28 May 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB304 Multi-Objective Multi-Generation Gaussian Process Optimizer operation, network, simulation, storage-ring 3383
 
  • X. Huang, M. Song, Z. Zhang
    SLAC, Menlo Park, California, USA
 
  Funding: DOE, Office of Science, Office of Basic Energy Sciences, DE-AC02-76SF00515 and FWP 2018-SLAC-100469 Computing Science, Office of Advanced Scientific Computing Research, FWP 2018-SLAC-100469ASCR.
We present a multi-objective evolutionary optimization algorithm that uses Gaussian process (GP) regression-based models to select trial solutions in a multi-generation iterative procedure. In each generation, a surrogate model is constructed for each objective function with the sample data. The models are used to evaluate solutions and to select the ones with a high potential before they are evaluated on the actual system. Since the trial solutions selected by the GP models tend to have better performance than other methods that only rely on random operations, the new algorithm has much higher efficiency in exploring the parameter space. Simulations with multiple test cases show that the new algorithm has a substantially higher convergence speed and stability than NSGA-II, MOPSO, and some other recent preselection-assisted algorithms.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB304  
About • paper received ※ 17 May 2021       paper accepted ※ 12 July 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB314 TEX - an X-Band Test Facility at INFN-LNF controls, klystron, GUI, LLRF 3406
 
  • S. Pioli, D. Alesini, F.A. Anelli, M. Bellaveglia, S. Bini, B. Buonomo, S. Cantarella, F. Cardelli, G. Catuscelli, R. Ceccarelli, A. Cecchinelli, F. Chiarelli, P. Ciuffetti, R. Clementi, C. Di Giulio, E. Di Pasquale, G. Di Raddo, M. Diomede, A. Esposito, L. Faillace, A. Falone, G. Franzini, A. Gallo, S. Incremona, A. Liedl, D. Pellegrini, G. Piermarini, L. Piersanti, S. Quaglia, R. Ricci, L. Sabbatini, M. Scampati, G. Scarselletta, A. Stella, R. Zarlenga
    INFN/LNF, Frascati, Italy
 
  Funding: The LATINO project is co-funded by the Regione Lazio within POR-FESR 2014-2020 European activities (public call "Open Research Infrastructures").
We report the status of the development of an High Power RF Laboratory in X-Band called TEX (TEst-stand for X-Band). TEX is part of the LATINO (Laboratory in Advanced Technologies for INnOvation) initiative that is ongoing at the Frascati National Laboratories (LNF) of the Italian Institute for Nuclear Physics (INFN) that covers many different areas focused on particle accelerator technologies. TEX is a RF test facility based on solid-state K400 modulator from ScandiNova with a 50MW class X-band (11.996 GHz) klystron tube model vkx 8311a operating at 50 Hz. This RF source will operate as resource for test and research programs such as the RF breakdown on RF waveguide components as well as high power testing of accelerating structures for future high gradient linear accelerator such as EuPRAXIA and CLIC. The high power testing will be performed in a dedicated brand-new bunker that has been recently built. RF system, vacuum controls and safety equipments are currently being installed. The first accelerating structure testing is scheduled by beginning 2022. In this document design and tests for all the sub-systems of the facility will be presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB314  
About • paper received ※ 19 May 2021       paper accepted ※ 28 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB319 Open XAL Status Report 2021 quadrupole, lattice, status, controls 3421
 
  • N. Milas, J.F. Esteban Müller, E. Laface, Y. Levinsen
    ESS, Lund, Sweden
  • T.V. Gorlov, A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  The Open XAL accelerator physics software platform is being developed through international collaboration among several facilities since 2010. The goal of the collaboration is to establish Open XAL as a multi-purpose software platform supporting a broad range of tool and application development in accelerator physics and high-level control (Open XAL also ships with a suite of general-purpose accelerator applications). This paper discusses progress in beam dynamics simulation, new RF models, and updated application framework along with new generic accelerator physics applications. We present the current status of the project, a roadmap for continued development, and an overview of the project status at each participating facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB319  
About • paper received ※ 19 May 2021       paper accepted ※ 21 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB407 An Innovative Eco-System for Accelerator Science and Technology neutron, controls, ion-source, software 3660
 
  • C. Darve, J.B. Andersen, S. Salman
    ESS, Lund, Sweden
  • B. Nicquevert, S. Petit
    CERN, Geneva, Switzerland
  • M. Stankovski
    LINXS, Lund, Sweden
 
  The emergence of new technologies and innovative communication tools permits us to transcend societal challenges. While particle accelerators are essential instruments to improve our quality of life through science and technology, an adequate ecosystem is essential to activate and maximize this potential. Research Infrastructure (RI) and industries supported by enlightened organizations and education, can generate a sustainable environment to serve this purpose. In this paper, we will discuss state-of-the-art infrastructures taking the lead to reach this impact, thus contributing to economic and social transformation.  
poster icon Poster WEPAB407 [61.076 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB407  
About • paper received ※ 19 May 2021       paper accepted ※ 02 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB227 MACH-B: Fast Multipole Method Approaches in Particle Accelerator Simulations for the Computational and Intensity Frontiers multipole, simulation, embedded, space-charge 4237
 
  • M.H. Langston, R. Lethin, P.D. Letourneau, J. Wei
    Reservoir Labs, New York, USA
  • M.J. Morse
    Courant Institute of Mathematical Sciences, New York University, New York, USA
 
  Funding: U.S. Department of Energy DOE SBIR Phase I Project DE-SC0020934
The MACH-B (Multipole Accelerator Codes for Hadron Beams) project is developing a Fast Multipole Method (FMM**)-based tool for higher fidelity modeling of particle accelerators for high-energy physics within the next generation of Fermilab’s Synergia* simulation package. MACH-B incorporates (1) highly-scalable, high-performance and generally-applicable FMM-based algorithms to accurately model space-charge effects in high-intensity hadron beams and (2) boundary integral approaches to handle singular effects near the beam pipe using advanced quadratures. MACH-B will allow for more complex beam dynamics simulations that more accurately capture bunch effects and predict beam loss. Further, by introducing an abstraction layer to hide FMM implementation and parallelization complexities, MACH-B removes one of the key impediments to the adoption of FMMs by the accelerator physics community.
* J. Amundson et al. "Synergia: An accelerator modeling tool with 3-D space charge". J.C.P. 211.1 (2006) 229-248.
** L. Greengard. "Fast algorithms for classical physics". Science (Aug 1994) 909-914.
 
poster icon Poster THPAB227 [0.984 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB227  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB250 Fire Detection System Reliability Analysis: An Operational Data-Based Framework operation, detector, database, controls 4296
 
  • M.M.C. Averna, G. Gai
    CERN, Meyrin, Switzerland
 
  This paper describes a framework developed at CERN, conducting reliability analysis of Safety-Critical Systems (Fire detection and Alarms) based on operational data. It applies Fault-Tree Analysis on maintenance-related data, categorized based on the component on failure. This framework, a tool implemented in Python, accounts for Fire Detection components installed in tunnels and surface buildings (control panels, detectors, etc) and safety functions triggered upon detection (evacuation, alarms to the CERN Fire Brigade, compartmentalization, electrical isolation, etc). The usefulness of the results of this type of analysis is twofold. Firstly, the results are a supporting tool for estimating the yearly availability of Fire Detection Systems in critical facilities, crucial in Capital and Operational Expenditure identification. Additionally, this approach refines the frequency analysis as part of quantitative fire risk assessments performed in the context of the FIRIA (Fire-Induced Radiological Integrated Assessment) Project, launched by CERN in 2018 and aiming at assessing the risk of fire events in experimental facilities with potential radiologic consequences to the public.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB250  
About • paper received ※ 18 May 2021       paper accepted ※ 19 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB289 Design and Manufacture of Solenoid Center Deviation Measurement Device solenoid, neutron, induction, interface 4366
 
  • X. Wu, C.D. Deng, W. Kang, L. Li, S. Li, Y.Q. Liu, Y.W. Wu, J.X. Zhou
    IHEP, Beijing, People’s Republic of China
 
  The solenoids are widely used both in conventional magnets and superconducting magnets in particle accelerators. The longitudinal fields along the longitudinal direction of the solenoids are usually measured with the Hall probe measurement system. However, in some cases, the deviation between the magnetic center and mechanical center of the solenoid is another important parameter and has to be measured accurately. In this paper, a device is designed and developed to measure the center deviation of the solenoid, which can be both used in conventional magnets and superconducting magnets. After the device is finished, some tests are made in the solenoid to check whether the data is correct. For the numerical simulation and analysis of the magnetic field inside the solenoid, the TOSCA code was chosen right from start. The results of the analysis are compared to the result of the tests.  
poster icon Poster THPAB289 [1.001 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB289  
About • paper received ※ 14 May 2021       paper accepted ※ 27 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)