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Abstract
The MACH-B (Multipole Accelerator Codes for

Hadron Beams) project is developing a Fast Multipole
Method [1–7] (FMM)-based tool for higher fidelity model-
ing of particle accelerators for high-energy physics within
the next generation of Fermilab’s Synergia simulation pack-
age [8]. MACH-B incorporates (1) highly-scalable, high-
performance and generally-applicable FMM-based algo-
rithms [5–7, 9] to accurately model space-charge effects
in high-intensity hadron beams and (2) boundary integral
approaches [10–12] to handle singular effects near the beam
pipe using advanced quadratures. MACH-B will allow for
more complex beam dynamics simulations that more accu-
rately capture bunch effects and predict beam loss. Further,
by introducing an abstraction layer to hide FMM implemen-
tation and parallelization complexities, MACH-B removes
one of the key impediments to the adoption of FMMs by the
accelerator physics community.

INTRODUCTION
The majority of numerical approaches for accelerator

multiparticle-tracking solve the macroscale problem by em-
ploying Particle-In-Cell (PIC) methods [8, 13–17]. These
methods incorporate an Eulerian method for solving the
necessary equations and Lagrangian techniques to advect
particles through the domain (e.g., see Fig. 1). The spe-
cific differences in PIC methods are in how mesh values and
particle values are mapped back and forth.

Figure 1: PIC-based Hockney solver. Given a cloud of
charged particles, iterate (1) Grid charge deposition; (2)
Compute potential; (3) Compute forces at grid points; (4)
Compute forces at particle locations.

Since space-charge modeling in high-intensity hadron
beams for the accelerator physics community requires scal-
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able and high-fidelity algorithmic approaches, all new com-
putational approaches must satisfy the following:

1. Are inherently multiscale: Algorithms that can handle
a variety of particle, field, and material distributions.
For heterogeneous particle bunches (in terms of compo-
sition, number or size), PIC approaches are insufficient.

2. Exploit locality: While PIC approaches handle near-
field effects appropriately, modeling these effects is
often as much art as it is science. Algorithms should
provide greater control over near-field interactions.

3. Reduce expense of non-locality while handling ac-
curacy: When lower numerical accuracy is acceptable,
new techniques should offer increased computational
performance while reducing far-field interaction costs.

4. Guarantee high accuracy when needed: Prior to
smoothing, macroparticles, or self-interactions, ap-
proaches must be inherently high-accuracy, solving the
underlying partial-differential equations. PIC codes de-
mand a very high-level of understanding to accurately
manipulate, often requiring decades of expertise. Alter-
native approaches should have a lower barrier-to-entry,
providing greater accessibility to adaptation by experts.

5. Handle a variety of complex geometries: Using a sim-
ilar framework as the domain solver, new approaches
need to solve boundary-dependent problems.

MACH-B TECHNOLOGY
MACH-B addresses the above five key elements, main-

taining the strengths of PIC codes and approaches while
further improving upon some of their weaknesses, allowing
domain experts to evaluate and optimize various scenarios
for complex high-energy physics experiments. The MACH-
B technology is based on existing and new mathematical
frameworks, providing new scalable, high-performance al-
gorithms that will assist in accurately and rapidly comput-
ing a variety of complex particle accelerator simulations;
specifically (1) Fast Multipole Methods (FMM) and (2)
Boundary Integral Solvers (BIS).

Combining these two technologies, MACH-B constructs
an Embedded Boundary Solver (EBS) made up of (1) a
multiscale, adaptive FMM solver for computing near and
far-field interactions within the volume and (2) a boundary
integral solver (BIS) based on Quadrature by Expansion
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(QBX) [12, 18–20] for fast evaluation of layer potentials
near and on a complex geometry. As an example, consider
Fig. 2: a complex shape with interior domain 𝜔, bound-
ary 𝛿𝜔 and an inhomogeneous interior PDE of the form:
𝐿(𝑢)(𝑥) = 𝑓 (𝑥) ∈ 𝜔, 𝑢(𝑥) = 𝑔(𝑥) ∈ 𝛿𝜔, where 𝐿(𝑢) repre-
sents the integral operator for the fundamental solution for
the underlying PDE (in this case 𝐿(𝑢) = Δ𝑢).

Figure 2: EBS approach for splitting a PDE into (1) an
inhomogeneous problem in a simple domain and (2) a ho-
mogeneous problem on a complex domain.

The EBS approach performs the following steps in Algo-
rithm 1, using FMMs for both major computational steps.

Algorithm 1: Embedded Boundary Solver
1. Embed the interior domain 𝜔 in a regular (e.g., a
rectangular prism) domain Ω with boundary 𝛿Ω
and solve 𝐿(𝑢1)(𝑥) = 𝑓 (𝑥) in Ω, where 𝑓 is given at
interior locations.

2. Solve a boundary integral problem, where border
data is modified from step 1:
𝐿(𝑢2)(𝑥) = 0, 𝑢2 = 𝑔 − 𝑢1 ∈ 𝛿𝜔.

3. Combine 𝑢1 and 𝑢2 to obtain the final solution 𝑢.

Fast Multipole Methods (FMM)
Originally designed for Coulomb interactions and belong-

ing to the class of tree codes, FMMs achieve linear scaling by
separating near- and far-field interactions (e.g., see Fig. 3) on
a spatial hierarchy using tree data structures. As they achieve
arbitrary precision at modest cost with straightforward error
estimates [1, 2, 4–6, 9, 10, 21–24], FMMs are well-suited for
problems requiring high accuracy at large scales, such as in
particle accelerator simulations.

Figure 3: (Left): A naive 𝑂(𝑁2) approach for computing
the interactions between well-separated sources and targets.
(Right): Using multipole and local expansions to reduce
far-field costs, based on refinement.

FMMs are inherently multiscale, separating a regular
domain into disjoint near- and far-field sets, using a tree

structure to exploit locality as well as reduce the expense
of non-locality through low-rank approximation multipole
expansions [1,4]. FMMs compute the total field at target do-
main 𝐵 as the sum of (a) the field due to the sources contained
in its near field 𝒩𝐵 and (b) its far field ℱ𝐵. Contributions
from 𝒩𝐵 are computed directly using dense summations,
while contributions from ℱ𝐵 are obtained by evaluating
approximating expansion coefficients. These coefficients are
constructed to achieve far-field low-rank approximations at
pre-specified levels of accuracy for computationally-efficient
and provably-accurate methods. Through the use of two
simple parameters ((1) for points per smallest grid in the hi-
erarchy and (2) for number of coefficients in the expansions),
high accuracy is guaranteed [2, 3, 25].

The FMM uses upward and downward passes on a hi-
erarchical tree structure, employing multiple operators for
converting expansion (multipole and local) coefficients to
achieve optimal 𝑂(𝑛) complexity (see Fig. 4 from [4]).

Figure 4: Local to Local (L2L), Multipole to Multipole
(M2M) and Multipole to Local (M2L) operators translate
coefficients efficiently throughout the FMM algorithm.

Boundary Integral Solvers (BIS)
For smooth/piecewise-smooth boundaries, such as those

seen near particle accelerator pipe walls, boundary integral
equation approaches (1) require no need for complex mesh
generation for calculating potentials, (2) satisfy far-field
boundary conditions, and (3) result in higher degrees of ac-
curacy. At the beam pipe, a BIS can be specifically designed
to couple with MACH-B’s proposed domain-based FMM
solver to produce an embedded boundary solver (EBS). In
cases where periodic or mixed boundary conditions may be
required, FMMs can be tailored to handle these with minimal
complexity [11, 12, 17, 19, 20, 23, 25]. Combining these two
technologies, MACH-B constructs an Embedded Boundary
Solver (EBS) consisting of (1) a multiscale, adaptive FMM
solver for computing near- and far-field interactions within
the volume (based on [6, 9]) and (2) a Quadrature by Expan-
sion (QBX)-based boundary integral solver (BIS) package,
called hedgehog [12] for fast evaluation of layer potentials
near and on a source geometry.

NUMERICAL RESULTS
To study the accuracy of the FMM-based solver within

Synergia, we performed a comparison between the accuracy
of Synergia’s PIC-based Hockney solver (including interpo-
lation from the grid to particles) methods and the FMM in a
general case: a cloud of charged particles. For this purpose,
we generated a 3D ensemble of charges (positive/protons)
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containing up to 32768 particles. Then, we used both Syn-
ergia’s PIC-based solver and Synergia’s new FMM-based
solver to compute all interactions, comparing to the naive
𝑂(𝑛2) solutions. Results are shown in Table 1.

Table 1: Study of Synergia’s PIC-based Solver vs. FMM
Solver for 𝜖 = 1𝑒 − 8 FMM Precision with 32768 Particles
per 𝑀-sized Grid Cell

Parameter (M/p) Relative Error (PIC/FMM)

32/8 1.41 ⋅ 10−1 / 2.66 ⋅ 10−7

64/8 1.23 ⋅ 10−1 / 2.66 ⋅ 10−7

128/8 9.92 ⋅ 10−2 / 2.66 ⋅ 10−7

256/8 6.56 ⋅ 10−2 / 2.66 ⋅ 10−7

Comparing MACH-B’s FMM implementation, 3D Hock-
ney (Synergia) and naive force computations on arbitrary
point clouds, the FMM preserves its accuracy regardless of
particle distribution, whereas the PIC-based methods, when
macroparticles are absent, suffer from significant numerical
errors associated with interpolation and finite differences.

MACH-B incorporates FMM-based boundary integral
solvers based on the hedgehog software package [12], study-
ing relative accuracy when evaluating potential and gradi-
ent solutions to Laplace’s equation with Dirichlet boundary
conditions (Top: potential; Bottom: gradient) on a simple
cylinder mesh as seen in Fig. 5.

Figure 5: Magnitude of potential (top) and gradient (bottom)
on cylinder for 𝛿 = 0.05 and 168 mesh patches. Note that
+𝑥 axis faces outward, and +𝑧 axis faces to the right.

We studied the behavior of the boundary solver for a cylin-
der with radius 0.5m and length 10m. For a fixed distance
𝛿 and a point y on the discretized boundary, we have the
interior point 𝑠(y), 𝑠(y) = y − 𝛿𝑛(y). For a source point
𝑠 = [1, 0, 0], we considered an FMM accuracy of 1𝑒 − 6
and increasing levels of surface discretization (Number of
patches) and evaluation distances of increasing value near
the bouyndary. As can be seen in Table 2, we achieve de-
sired levels of accuracy for both kernels even in regimes
very close to the surface as well as further away.

For studying the full EBS solver, we modeled the po-
tential of a single-bunch, Gaussian distribution of charges
within a cylindrical conducting pipe. Approximated open

Table 2: Relative Errors for Potential and Gradient Kernels
for 𝜖 = 1𝑒−6 Requested Precision As We Increase 𝛿 And the
Mesh Discretization for a Cylinder Mesh (see Figs. 6 and 7)

Number of Patches

K 𝜹 168 672 2688

Pot.
0.05 6.27 ⋅ 10−5 4.68 ⋅ 10−6 8.87 ⋅ 10−7

0.1 1.70 ⋅ 10−5 3.56 ⋅ 10−6 6.54 ⋅ 10−7

0.2 9.07 ⋅ 10−6 1.79 ⋅ 10−6 3.20 ⋅ 10−7

Gra.
0.05 8.43 ⋅ 10−3 3.17 ⋅ 10−5 5.84 ⋅ 10−6

0.1 8.49 ⋅ 10−5 1.96 ⋅ 10−5 3.86 ⋅ 10−6

0.2 5.53 ⋅ 10−5 1.20 ⋅ 10−5 2.25 ⋅ 10−6

boundary conditions at the ends (when a source distribu-
tion is concentrated locally) are achieved by extending the
length of the pipe. We set the interior charge values to
𝑝(x) = 1

𝜎3(2𝜋)3/2 exp(− ||x||2

2𝜎2 ) (𝜎 = 0.1) for 𝑁 = 104 source
points in the interior along the Gaussian. Results for the x-y
and x-z planes exhibit expected decay in Figs. 6 and 7.

Figure 6: Cylinder cross-section at 𝑧 = 0 for potential.

Figure 7: Cylinder cross-section at 𝑦 = 0 for potential, show-
ing only the +𝑥 half-plane.

CONCLUSION
Fast Multipole Methods and Integral Equation Solvers

for complex boundaries provide alternative approaches to
standard PIC-based solvers for the particle accelerator com-
munity. Through MACH-B, we have shown the applicability
of these methods within Synergia, and ongoing work con-
tinues to improve these methods and develop modules for
other simulation frameworks. We envision that FMM-based
tools will become a strong verification and analysis tool for
domain experts as well as open opportunities for new types
of simulations involving more complex bunch dynamics.
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