Design and manufacture of Solenoid center deviation measurement device

Xi Wu ${ }^{1,2}$, Yu-Wen Wu ${ }^{1,2}$, Chang-Dong Deng ${ }^{1,2}$, Shuai Li ${ }^{1,2}$, Yi-Qin Liu ${ }^{1,2, \text {,Jian-Xin Zhou }}{ }^{1,2}$, Li Li ${ }^{1,2}$

1. Institute of High Energy Physics Dongguan Campus, Chinese Academy of Sciences, Dongguan 523803, China

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Background

China Spallation Neutron Source (CSNS) is the first large scientific facility in southern part of China. The project construction started in 2011 and will be completed in March 2018. The Hall Probe measurement system in CSNS have finished the measurement task. We modified the system to measure the center deviation of the solenoid. The deviation between magnetic center and mechanical center of solenoid is an important parameter and has to be measured accurately. This work was supported by the Jia-Lin Xie Foundation (Y6546220U2).

* The device can measure the angular deviation of solenoid is 0.015
* The device can measure the center displacement deviation of solenoid is 0.1 mm

Conclusion

* A device is designed to measure the center deviation of the solenoid, which can be both used in conventional solenoid and superconducting solenoid.
* A new rotating coil built base on hall measurement system had successfully been developed.
* The precision of the device is good enough to meet the measurement requirements.
* Some key issues were solved in the process.

FE model of the solenoid

The distribution of center magnetic fields of the solenoid. The maximal magnetic field of the model is about 4240Gs. The right curve shows the distribution of magnetic fields along longitudinal direction of the solenoid
about 100 mm .

The distribution of magnetic fields on the edge when the displacement deviation between mechanical center sensor to measure the difference of magnetic field on the edge to measure the deviation

The distribution of magnetic fields in radial direction And the center is 0.1 mm off. The magnetic field 645.2 Gs and in the other side is 648.4 Gs .

