Keyword: FPGA
Paper Title Other Keywords Page
MOPAB288 Real-Time Edge AI for Distributed Systems (READS): Progress on Beam Loss De-Blending for the Fermilab Main Injector and Recycler network, real-time, operation, distributed 912
 
  • K.J. Hazelwood, M.R. Austin, M.A. Ibrahim, V.P. Nagaslaev, A. Narayanan, D.J. Nicklaus, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  • H. Liu, S. Memik, R. Shi, M. Thieme
    Northwestern University, Evanston, Illinois, USA
  • A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
 
  The Fer­mi­lab Main In­jec­tor en­clo­sure houses two ac­cel­er­a­tors, the Main In­jec­tor and Re­cy­cler. Dur­ing nor­mal op­er­a­tion, high in­ten­sity pro­ton beams exist si­mul­ta­ne­ously in both. The two ac­cel­er­a­tors share the same beam loss mon­i­tors (BLM) and mon­i­tor­ing sys­tem. Beam losses in the Main In­jec­tor en­clo­sure are mon­i­tored for tun­ing the ac­cel­er­a­tors and ma­chine pro­tec­tion. Losses are cur­rently at­trib­uted to a spe­cific ma­chine based on tim­ing. How­ever, this method alone is in­suf­fi­cient and often in­ac­cu­rate, re­sult­ing in more dif­fi­cult ma­chine tun­ing and un­nec­es­sary ma­chine down­time. Ma­chine ex­perts can often dis­tin­guish the cor­rect source of beam loss. This sug­gests a ma­chine learn­ing (ML) model may be pro­ducible to help de-blend losses be­tween ma­chines. Work is un­der­way as part of the Fer­mi­lab Real-time Edge AI for Dis­trib­uted Sys­tems Pro­ject (READS) to de­velop a ML em­pow­ered sys­tem that col­lects streamed BLM data and ad­di­tional ma­chine read­ings to infer in real-time, which ma­chine gen­er­ated beam loss.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB288  
About • paper received ※ 19 May 2021       paper accepted ※ 29 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB279 First Tests of Beam Position Monitor Electronics with Bunch Resolving Capabilities storage-ring, electron, electronics, pick-up 2124
 
  • G. Rehm, F. Falkenstern, J. Kuszynski, A. Schälicke
    HZB, Berlin, Germany
 
  We are re­port­ing on first tests of a beam po­si­tion mon­i­tor using 1 GS/s data streams of sig­nals from a four but­ton pickup. The sys­tem dig­i­tizes sig­nals of ~2 GHz band­width using a choice of sam­pling fre­quency that re­al­izes equiv­a­lent time sam­pling. The data is sub­se­quently processed in the Fourier do­main to un­fold the aliased spec­tral lines and apply an im­pulse re­sponse cor­rec­tion per chan­nel. After trans­form­ing back into time do­main, in­di­vid­ual bunch sig­nals can be clearly iden­ti­fied and se­lected for fur­ther pro­cess­ing and dec­i­ma­tion. The paper will pro­vide de­tail on the hard­ware im­ple­men­ta­tion and demon­strate the bunch re­solv­ing ca­pa­bil­i­ties, long term sta­bil­ity and beam in­ten­sity de­pen­dence using beam tests in BESSY-II and syn­thetic sig­nals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB279  
About • paper received ※ 18 May 2021       paper accepted ※ 06 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB299 Tuned Delay Unit for a Stochastic Cooling System at NICA Collider pick-up, kicker, controls, collider 2186
 
  • S.V. Barabin, T. Kulevoy, D.A. Liakin, A.Y. Orlov
    ITEP, Moscow, Russia
  • I.V. Gorelyshev, K.G. Osipov, V.V. Peshkov, A.O. Sidorin
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  Sto­chas­tic cool­ing is one of the cru­cial NICA (Nu­clotron-based Ion Col­lider fA­cil­ity) sub­sys­tems. This sys­tem re­quires fine tun­ing of the re­sponse delay to the kicker, for both lon­gi­tu­di­nal and trans­verse sto­chas­tic cool­ing sys­tems. The use of a dig­i­tal delay line al­lows to add ad­di­tional fea­tures such as a fre­quency de­pen­dent group ve­loc­ity cor­rec­tion. To analyse the ca­pa­bil­i­ties of the dig­i­tal delay unit, a pro­to­type of the de­vice was cre­ated and tested. The ar­ti­cle pre­sents the char­ac­ter­is­tics of the pro­to­type, its ar­chi­tec­ture and prin­ci­ple of op­er­a­tion, test re­sults and es­ti­ma­tions for the fu­ture de­vel­op­ments.  
poster icon Poster TUPAB299 [0.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB299  
About • paper received ※ 17 May 2021       paper accepted ※ 10 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB327 Developing Robust Digital Twins and Reinforcement Learning for Accelerator Control Systems at the Fermilab Booster controls, network, booster, power-supply 2268
 
  • D.L. Kafkes
    Fermilab, Batavia, Illinois, USA
  • M. Schram
    JLab, Newport News, Virginia, USA
 
  Funding: This research was sponsored by the Fermilab Laboratory Directed Research and Development Program under Project ID FNAL-LDRD-2019-027: Accelerator Control with Artificial Intelligence.
We de­scribe the of­fline ma­chine learn­ing (ML) de­vel­op­ment for an ef­fort to pre­cisely reg­u­late the Gra­di­ent Mag­net Power Sup­ply (GMPS) at the Fer­mi­lab Booster ac­cel­er­a­tor com­plex via a Field-Pro­gram­ma­ble Gate Array (FPGA). As part of this ef­fort, we cre­ated a dig­i­tal twin of the Booster-GMPS con­trol sys­tem by train­ing a Long Short-Term Mem­ory (LSTM) to cap­ture its full dy­nam­ics. We out­line the path we took to care­fully val­i­date our dig­i­tal twin be­fore de­ploy­ing it as a re­in­force­ment learn­ing (RL) en­vi­ron­ment. Ad­di­tion­ally, we demon­strate the use of a Deep Q-Net­work (DQN) pol­icy model with the ca­pa­bil­ity to reg­u­late the GMPS against re­al­is­tic time-vary­ing per­tur­ba­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB327  
About • paper received ※ 18 May 2021       paper accepted ※ 22 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB298 Design of an Accurate LLRF System for an Array of Two-Gap Resonators controls, LLRF, distributed, Ethernet 3360
 
  • D.A. Liakin, S.V. Barabin, T. Kulevoy, A.Y. Orlov
    ITEP, Moscow, Russia
 
  A par­ti­cle ac­cel­er­a­tor based on an array of two-gap res­onators re­quires a con­trol sys­tem, which is re­spon­si­ble for pre­cise setup and sta­bi­liza­tion of the phase and mag­ni­tude of the elec­tro­mag­netic field in res­onators. We de­velop a cost-ef­fec­tive LLRF sys­tem for the array of more than 80 res­onators and three dif­fer­ent op­er­at­ing fre­quen­cies. The de­sign is based on proved so­lu­tion used for 5-res­onators ac­cel­er­a­tor HILAC (pro­ject NICA, Dubna). This paper gives an overview of the basic struc­ture and some spe­cific fea­tures of the de­vel­op­ing LLRF con­trol sys­tem.  
poster icon Poster WEPAB298 [0.355 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB298  
About • paper received ※ 18 May 2021       paper accepted ※ 23 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB322 Status of Digital BPM Signal Processor for SHINE cavity, FEL, electron, electronics 3430
 
  • L.W. Lai, F.Z. Chen, Y.B. Leng, T. Wu, Y.M. Zhou
    SSRF, Shanghai, People’s Republic of China
  • J. Wan
    SINAP, Shanghai, People’s Republic of China
 
  Funding: Youth Innovation Promotion Association, CAS (Grant No. 2019290); The National Key Research and Development Program of China (Grant No. 2016YFA0401903).
Dig­i­tal sig­nal proces­sors that can han­dle 1MHz bunch rate BPM sig­nal pro­cess­ing are under de­vel­op­ment for SHINE. Two dif­fer­ent proces­sors have been de­vel­oped at the same time, in­clud­ing an in­ter­me­di­ate fre­quency sig­nal proces­sor with a sam­pling rate higher than 500MHz, which can be used in gen­eral BPM ap­pli­ca­tions; and a di­rect RF sam­pling proces­sor, which can di­rectly sam­ple the C band cav­ity BPM sig­nal with­out ana­log down-con­ver­sion mod­ules and greatly sim­pli­fies the cav­ity BPM sys­tem. This paper will in­tro­duce the de­sign, de­vel­op­ment sta­tus, and per­for­mance eval­u­a­tions of the proces­sors.
 
poster icon Poster WEPAB322 [1.919 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB322  
About • paper received ※ 20 May 2021       paper accepted ※ 10 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB394 Development of a New Interlock and Data Acquisition for the RF System at High Energy Photon Source controls, EPICS, cavity, PLC 3630
 
  • Z.W. Deng, J.P. Dai, H.Y. Lin, Q.Y. Wang, P. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work was supported by High Energy Photon Source, a major national science and technology infrastructure in China.
A new in­ter­lock and data ac­qui­si­tion (DAQ) sys­tem is being de­vel­oped for the RF sys­tem at High En­ergy Pho­ton Source (HEPS) to pro­tect es­sen­tial de­vices as well as to lo­cate the fault. Var­i­ous sig­nals col­lected and pre-processed by the DAQ sys­tem and in­di­vid­ual in­ter­lock sig­nals from solid-state power am­pli­fiers, low-level RFs, arc de­tec­tors, etc. are sent to the in­ter­lock sys­tem for logic de­ci­sion to con­trol the RF switch. Pro­gram­ma­ble logic con­trollers (PLC) are used to col­lect slow sig­nals like tem­per­a­ture, water flowrate, etc., while fast ac­qui­si­tion for RF sig­nals is re­al­ized by ded­i­cated boards with down-con­ver­sion fron­tend and dig­i­tal sig­nal pro­cess­ing boards. In order to im­prove the re­sponse time, field pro­gram­ma­ble gate array (FPGA) has been used for in­ter­lock logic im­ple­men­ta­tion with an em­bed­ded ex­per­i­men­tal physics and in­dus­trial con­trol sys­tem (EPICS). Data stor­age is man­aged by using EPICS Archiver Ap­pli­ance and an op­er­a­tor in­ter­face is de­vel­oped by using Con­trol Sys­tem Stu­dio (CSS) run­ning on a stand­alone com­puter. This paper pre­sents the de­sign and the first test of the new in­ter­lock and DAQ for HEPS RF sys­tem.
 
poster icon Poster WEPAB394 [2.140 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB394  
About • paper received ※ 16 May 2021       paper accepted ※ 14 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB138 FEbreak: A Comprehensive Diagnostic and Automated Conditioning Interface for Analysis of Breakdown and Dark Current Effects controls, cavity, real-time, software 4027
 
  • M.E. Schneider, S.V. Baryshev
    Michigan State University, East Lansing, Michigan, USA
  • R.L. Fleming, D. Gorelov, J.W. Lewellen, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • E. Jevarjian
    MSU, East Lansing, Michigan, USA
 
  Funding: DE-AC02-06CH11357, No. DE-SC0018362, DE-NA-0003525, DE-AC52-06NA25396, LA-UR-21-20613
As the next gen­er­a­tion of ac­cel­er­a­tor tech­nol­ogy pushes to­wards being able to achieve higher and higher gra­di­ents there is a need to de­velop high-fre­quency struc­tures that can sup­port these fields *. The con­di­tion­ing process of the struc­tures and wave­guides to high gra­di­ent is a la­bor-in­ten­sive process, its length in­creases as the max­i­mum gra­di­ent is in­creased. This re­sults in the need to au­to­mate the con­di­tion­ing process. This au­toma­tion must allow for high ac­cu­racy cal­cu­la­tions of the break­down prob­a­bil­i­ties as­so­ci­ated with the con­di­tion­ing process which can be used to in­struct the con­di­tion­ing pro­ce­dure with­out the need for human in­ter­ven­tion. To au­to­mate the con­di­tion­ing process at LANL’s high gra­di­ent C-band ac­cel­er­a­tor test stand we de­vel­oped FEbreak that is a break­out prob­a­bil­ity and con­di­tion­ing au­toma­tion soft­ware that is a part of the FE­mas­ter se­ries **, ***, ****. FEbreak di­rectly in­ter­faces with the rest of FE­mas­ter to au­to­mate the data col­lec­tion and data pro­cess­ing to not only an­a­lyze the break­down prob­a­bil­ity but also the dark cur­rent ef­fects as­so­ci­ated with these high gra­di­ent struc­tures.
* E. I. Simakov Nuc. Inst. and Meth, in Phy. Research Section A: Acc. Spec, 907 221 (2019)
** E. Jevarjian arXiv:2009.13046
*** T. Y. Posos arXiv:2012.03578
**** M. Schneider arXiv:2012.10804
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB138  
About • paper received ※ 18 May 2021       paper accepted ※ 02 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB264 FOFB System Upgrade to ZynqMP FPGA with Fast ORM Measurement closed-orbit, storage-ring, hardware, EPICS 4322
 
  • Y.E. Tan, S. Chen, R.B. Hogan, A. Michalczyk
    AS - ANSTO, Clayton, Australia
 
  The FOFB proces­sor has been ported from a Ver­tex 6 FPGA to a Zyn­qMP SoC (Sys­tem on Chip) to pro­vide ad­di­tional re­sources to in­clude the en­hanced orbit di­ag­nos­tics (EOD) sys­tem that has been de­signed to in­ject si­nu­soidal and pink noise through the feed­back loop. The am­pli­tude, du­ra­tion, phase and fre­quency of si­nu­soidal, am­pli­tude and du­ra­tion of pink noise is user pro­gram­ma­ble.  
poster icon Poster THPAB264 [1.601 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB264  
About • paper received ※ 04 June 2021       paper accepted ※ 26 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB271 JLAB LLRF 3.0 Development and Tests cavity, LLRF, controls, cryomodule 4340
 
  • T.E. Plawski, R. Bachimanchi, S. Higgins, C. Hovater, J. Latshaw, C.I. Mounts, D.J. Seidman, J. Yan
    JLab, Newport News, Virginia, USA
 
  The Jef­fer­son Lab LLRF 3.0 sys­tem is being de­vel­oped to re­place legacy LLRF sys­tems in the CEBAF ac­cel­er­a­tor. The new de­sign builds upon 25 years of de­sign and op­er­a­tional RF con­trol ex­pe­ri­ence, and our re­cent col­lab­o­ra­tion in the de­sign of the LCLSII LLRF sys­tem. The new cav­ity con­trol al­go­rithm is a fully func­tional phase and am­pli­tude locked Self Ex­cit­ing Loop (SEL). This paper dis­cusses the progress of the LLRF 3.0 hard­ware de­sign, FPGA firmware de­vel­op­ment, User Data­gram Pro­to­col (UDP) op­er­a­tion, and re­cent LLRF 3.0 sys­tem tests on the CEBAF Booster cry­omod­ule in the Up­grade In­jec­tor Test Fa­cil­ity (UITF).  
poster icon Poster THPAB271 [1.940 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB271  
About • paper received ※ 14 May 2021       paper accepted ※ 06 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC03 Modern Ultra-Fast Detectors for Online Beam Diagnostics detector, electron, laser, experiment 4540
 
  • M.M. Patil, E. Bründermann, M. Caselle, A. Ebersoldt, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, J.L. Steinmann, W. Wang, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKD STARTRAC and DFG-funded Doctoral School ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’
Syn­chro­tron light sources op­er­ate with bunch rep­e­ti­tion rates in the MHz regime. The lon­gi­tu­di­nal and trans­verse beam dy­nam­ics of these elec­tron bunches can be in­ves­ti­gated and char­ac­ter­ized by ex­per­i­ments em­ploy­ing lin­ear array de­tec­tors. To im­prove the per­for­mance of mod­ern beam di­ag­nos­tics and over­come the lim­i­ta­tions of com­mer­cially avail­able de­tec­tors, we have at KIT de­vel­oped KA­LYPSO, a de­tec­tor sys­tem op­er­at­ing with an un­prece­dented frame rate of up to 12 MHz. To fa­cil­i­tate the in­te­gra­tion in dif­fer­ent ex­per­i­ments, a mod­u­lar ar­chi­tec­ture has been uti­lized. Dif­fer­ent semi­con­duc­tor mi­crostrip sen­sors based on Si, In­GaAs, PbS, and PbSe can be con­nected to the cus­tom-de­signed low noise front-end ASIC to op­ti­mize the quan­tum ef­fi­ciency at dif­fer­ent pho­ton en­er­gies, rang­ing from near-UV, vis­i­ble, and up to near-IR. The front-end elec­tron­ics are in­te­grated within a het­ero­ge­neous DAQ con­sist­ing of FPGAs and GPUs, which al­lows the im­ple­men­ta­tion of real-time data pro­cess­ing. This de­tec­tor is cur­rently in­stalled at KARA, Eu­ro­pean XFEL, FLASH, Soleil, DELTA. In this con­tri­bu­tion, we pre­sent the de­tec­tor ar­chi­tec­ture, the per­for­mance re­sults, and the on­go­ing tech­ni­cal de­vel­op­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC03  
About • paper received ※ 19 May 2021       paper accepted ※ 22 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)