Keyword: FPGA
Paper Title Other Keywords Page
MOPAB288 Real-Time Edge AI for Distributed Systems (READS): Progress on Beam Loss De-Blending for the Fermilab Main Injector and Recycler network, real-time, operation, distributed 912
 
  • K.J. Hazelwood, M.R. Austin, M.A. Ibrahim, V.P. Nagaslaev, A. Narayanan, D.J. Nicklaus, A.L. Saewert, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  • H. Liu, S. Memik, R. Shi, M. Thieme
    Northwestern University, Evanston, Illinois, USA
  • A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
 
  The Fermilab Main Injector enclosure houses two accelerators, the Main Injector and Recycler. During normal operation, high intensity proton beams exist simultaneously in both. The two accelerators share the same beam loss monitors (BLM) and monitoring system. Beam losses in the Main Injector enclosure are monitored for tuning the accelerators and machine protection. Losses are currently attributed to a specific machine based on timing. However, this method alone is insufficient and often inaccurate, resulting in more difficult machine tuning and unnecessary machine downtime. Machine experts can often distinguish the correct source of beam loss. This suggests a machine learning (ML) model may be producible to help de-blend losses between machines. Work is underway as part of the Fermilab Real-time Edge AI for Distributed Systems Project (READS) to develop a ML empowered system that collects streamed BLM data and additional machine readings to infer in real-time, which machine generated beam loss.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB288  
About • paper received ※ 19 May 2021       paper accepted ※ 29 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB279 First Tests of Beam Position Monitor Electronics with Bunch Resolving Capabilities storage-ring, electron, electronics, pick-up 2124
 
  • G. Rehm, F. Falkenstern, J. Kuszynski, A. Schälicke
    HZB, Berlin, Germany
 
  We are reporting on first tests of a beam position monitor using 1 GS/s data streams of signals from a four button pickup. The system digitizes signals of ~2 GHz bandwidth using a choice of sampling frequency that realizes equivalent time sampling. The data is subsequently processed in the Fourier domain to unfold the aliased spectral lines and apply an impulse response correction per channel. After transforming back into time domain, individual bunch signals can be clearly identified and selected for further processing and decimation. The paper will provide detail on the hardware implementation and demonstrate the bunch resolving capabilities, long term stability and beam intensity dependence using beam tests in BESSY-II and synthetic signals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB279  
About • paper received ※ 18 May 2021       paper accepted ※ 06 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB299 Tuned Delay Unit for a Stochastic Cooling System at NICA Collider pick-up, kicker, controls, collider 2186
 
  • S.V. Barabin, T. Kulevoy, D.A. Liakin, A.Y. Orlov
    ITEP, Moscow, Russia
  • I.V. Gorelyshev, K.G. Osipov, V.V. Peshkov, A.O. Sidorin
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  Stochastic cooling is one of the crucial NICA (Nuclotron-based Ion Collider fAcility) subsystems. This system requires fine tuning of the response delay to the kicker, for both longitudinal and transverse stochastic cooling systems. The use of a digital delay line allows to add additional features such as a frequency dependent group velocity correction. To analyse the capabilities of the digital delay unit, a prototype of the device was created and tested. The article presents the characteristics of the prototype, its architecture and principle of operation, test results and estimations for the future developments.  
poster icon Poster TUPAB299 [0.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB299  
About • paper received ※ 17 May 2021       paper accepted ※ 10 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB327 Developing Robust Digital Twins and Reinforcement Learning for Accelerator Control Systems at the Fermilab Booster controls, network, booster, power-supply 2268
 
  • D.L. Kafkes
    Fermilab, Batavia, Illinois, USA
  • M. Schram
    JLab, Newport News, Virginia, USA
 
  Funding: This research was sponsored by the Fermilab Laboratory Directed Research and Development Program under Project ID FNAL-LDRD-2019-027: Accelerator Control with Artificial Intelligence.
We describe the offline machine learning (ML) development for an effort to precisely regulate the Gradient Magnet Power Supply (GMPS) at the Fermilab Booster accelerator complex via a Field-Programmable Gate Array (FPGA). As part of this effort, we created a digital twin of the Booster-GMPS control system by training a Long Short-Term Memory (LSTM) to capture its full dynamics. We outline the path we took to carefully validate our digital twin before deploying it as a reinforcement learning (RL) environment. Additionally, we demonstrate the use of a Deep Q-Network (DQN) policy model with the capability to regulate the GMPS against realistic time-varying perturbations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB327  
About • paper received ※ 18 May 2021       paper accepted ※ 22 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB298 Design of an Accurate LLRF System for an Array of Two-Gap Resonators controls, LLRF, distributed, Ethernet 3360
 
  • D.A. Liakin, S.V. Barabin, T. Kulevoy, A.Y. Orlov
    ITEP, Moscow, Russia
 
  A particle accelerator based on an array of two-gap resonators requires a control system, which is responsible for precise setup and stabilization of the phase and magnitude of the electromagnetic field in resonators. We develop a cost-effective LLRF system for the array of more than 80 resonators and three different operating frequencies. The design is based on proved solution used for 5-resonators accelerator HILAC (project NICA, Dubna). This paper gives an overview of the basic structure and some specific features of the developing LLRF control system.  
poster icon Poster WEPAB298 [0.355 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB298  
About • paper received ※ 18 May 2021       paper accepted ※ 23 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB322 Status of Digital BPM Signal Processor for SHINE cavity, FEL, electron, electronics 3430
 
  • L.W. Lai, F.Z. Chen, Y.B. Leng, T. Wu, Y.M. Zhou
    SSRF, Shanghai, People’s Republic of China
  • J. Wan
    SINAP, Shanghai, People’s Republic of China
 
  Funding: Youth Innovation Promotion Association, CAS (Grant No. 2019290); The National Key Research and Development Program of China (Grant No. 2016YFA0401903).
Digital signal processors that can handle 1MHz bunch rate BPM signal processing are under development for SHINE. Two different processors have been developed at the same time, including an intermediate frequency signal processor with a sampling rate higher than 500MHz, which can be used in general BPM applications; and a direct RF sampling processor, which can directly sample the C band cavity BPM signal without analog down-conversion modules and greatly simplifies the cavity BPM system. This paper will introduce the design, development status, and performance evaluations of the processors.
 
poster icon Poster WEPAB322 [1.919 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB322  
About • paper received ※ 20 May 2021       paper accepted ※ 10 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB394 Development of a New Interlock and Data Acquisition for the RF System at High Energy Photon Source controls, EPICS, cavity, PLC 3630
 
  • Z.W. Deng, J.P. Dai, H.Y. Lin, Q.Y. Wang, P. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work was supported by High Energy Photon Source, a major national science and technology infrastructure in China.
A new interlock and data acquisition (DAQ) system is being developed for the RF system at High Energy Photon Source (HEPS) to protect essential devices as well as to locate the fault. Various signals collected and pre-processed by the DAQ system and individual interlock signals from solid-state power amplifiers, low-level RFs, arc detectors, etc. are sent to the interlock system for logic decision to control the RF switch. Programmable logic controllers (PLC) are used to collect slow signals like temperature, water flowrate, etc., while fast acquisition for RF signals is realized by dedicated boards with down-conversion frontend and digital signal processing boards. In order to improve the response time, field programmable gate array (FPGA) has been used for interlock logic implementation with an embedded experimental physics and industrial control system (EPICS). Data storage is managed by using EPICS Archiver Appliance and an operator interface is developed by using Control System Studio (CSS) running on a standalone computer. This paper presents the design and the first test of the new interlock and DAQ for HEPS RF system.
 
poster icon Poster WEPAB394 [2.140 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB394  
About • paper received ※ 16 May 2021       paper accepted ※ 14 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB138 FEbreak: A Comprehensive Diagnostic and Automated Conditioning Interface for Analysis of Breakdown and Dark Current Effects controls, cavity, real-time, software 4027
 
  • M.E. Schneider, S.V. Baryshev
    Michigan State University, East Lansing, Michigan, USA
  • R.L. Fleming, D. Gorelov, J.W. Lewellen, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • E. Jevarjian
    MSU, East Lansing, Michigan, USA
 
  Funding: DE-AC02-06CH11357, No. DE-SC0018362, DE-NA-0003525, DE-AC52-06NA25396, LA-UR-21-20613
As the next generation of accelerator technology pushes towards being able to achieve higher and higher gradients there is a need to develop high-frequency structures that can support these fields *. The conditioning process of the structures and waveguides to high gradient is a labor-intensive process, its length increases as the maximum gradient is increased. This results in the need to automate the conditioning process. This automation must allow for high accuracy calculations of the breakdown probabilities associated with the conditioning process which can be used to instruct the conditioning procedure without the need for human intervention. To automate the conditioning process at LANL’s high gradient C-band accelerator test stand we developed FEbreak that is a breakout probability and conditioning automation software that is a part of the FEmaster series **, ***, ****. FEbreak directly interfaces with the rest of FEmaster to automate the data collection and data processing to not only analyze the breakdown probability but also the dark current effects associated with these high gradient structures.
* E. I. Simakov Nuc. Inst. and Meth, in Phy. Research Section A: Acc. Spec, 907 221 (2019)
** E. Jevarjian arXiv:2009.13046
*** T. Y. Posos arXiv:2012.03578
**** M. Schneider arXiv:2012.10804
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB138  
About • paper received ※ 18 May 2021       paper accepted ※ 02 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB264 FOFB System Upgrade to ZynqMP FPGA with Fast ORM Measurement closed-orbit, storage-ring, hardware, EPICS 4322
 
  • Y.E. Tan, S. Chen, R.B. Hogan, A. Michalczyk
    AS - ANSTO, Clayton, Australia
 
  The FOFB processor has been ported from a Vertex 6 FPGA to a ZynqMP SoC (System on Chip) to provide additional resources to include the enhanced orbit diagnostics (EOD) system that has been designed to inject sinusoidal and pink noise through the feedback loop. The amplitude, duration, phase and frequency of sinusoidal, amplitude and duration of pink noise is user programmable.  
poster icon Poster THPAB264 [1.601 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB264  
About • paper received ※ 04 June 2021       paper accepted ※ 26 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB271 JLAB LLRF 3.0 Development and Tests cavity, LLRF, controls, cryomodule 4340
 
  • T.E. Plawski, R. Bachimanchi, S. Higgins, C. Hovater, J. Latshaw, C.I. Mounts, D.J. Seidman, J. Yan
    JLab, Newport News, Virginia, USA
 
  The Jefferson Lab LLRF 3.0 system is being developed to replace legacy LLRF systems in the CEBAF accelerator. The new design builds upon 25 years of design and operational RF control experience, and our recent collaboration in the design of the LCLSII LLRF system. The new cavity control algorithm is a fully functional phase and amplitude locked Self Exciting Loop (SEL). This paper discusses the progress of the LLRF 3.0 hardware design, FPGA firmware development, User Datagram Protocol (UDP) operation, and recent LLRF 3.0 system tests on the CEBAF Booster cryomodule in the Upgrade Injector Test Facility (UITF).  
poster icon Poster THPAB271 [1.940 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB271  
About • paper received ※ 14 May 2021       paper accepted ※ 06 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC03 Modern Ultra-Fast Detectors for Online Beam Diagnostics detector, electron, laser, experiment 4540
 
  • M.M. Patil, E. Bründermann, M. Caselle, A. Ebersoldt, S. Funkner, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, J.L. Steinmann, W. Wang, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05K19VKD STARTRAC and DFG-funded Doctoral School ’Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology’
Synchrotron light sources operate with bunch repetition rates in the MHz regime. The longitudinal and transverse beam dynamics of these electron bunches can be investigated and characterized by experiments employing linear array detectors. To improve the performance of modern beam diagnostics and overcome the limitations of commercially available detectors, we have at KIT developed KALYPSO, a detector system operating with an unprecedented frame rate of up to 12 MHz. To facilitate the integration in different experiments, a modular architecture has been utilized. Different semiconductor microstrip sensors based on Si, InGaAs, PbS, and PbSe can be connected to the custom-designed low noise front-end ASIC to optimize the quantum efficiency at different photon energies, ranging from near-UV, visible, and up to near-IR. The front-end electronics are integrated within a heterogeneous DAQ consisting of FPGAs and GPUs, which allows the implementation of real-time data processing. This detector is currently installed at KARA, European XFEL, FLASH, Soleil, DELTA. In this contribution, we present the detector architecture, the performance results, and the ongoing technical developments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC03  
About • paper received ※ 19 May 2021       paper accepted ※ 22 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)