Keyword: pick-up
Paper Title Other Keywords Page
MOPAB178 Systematic Effects Limiting the Sensitivity of "Magic Energy" Proton EDM Rings proton, dipole, betatron, focusing 602
 
  • C. Carli, M. Haj Tahar
    CERN, Geneva, Switzerland
 
  Proposals to measure a possible Electric Dipole Moment (EDM) of protons in an electro-static storage ring are studied by a world-wide community. The machine is operated at the so-called "magic energy" to satisfy the "frozen spin" condition such that, without imperfections and with the well known magnetic moment of the particle, the spin is always oriented parallel to the direction of movement. The effect of a finite EDM is a build-up of a vertical spin component. Any effect, other than a finite EDM, leading as well to a build-up of a vertical spin limits the sensitivity of the experiment. Such "systematic effects" are caused by machine imperfections, such as magnetic fields inside the magnetic shield surrounding the ring, and misalignments of electro-static elements or of the RF cavity. Operation of the machine with counter-rotating beams helps mitigating some of the effects. The most dangerous effects are those, which cannot be disentangled from an EDM by combining measurements from both counter-rotating beams, such as an average residual radial magnetic field penetrating the magnetic shield or a combination of magnetic fields and misalignments of electric elements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB178  
About • paper received ※ 18 May 2021       paper accepted ※ 17 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB278 Prototype of the Bunch Arrival Time Monitor for SHINE laser, FEL, electron, controls 881
 
  • X.Q. Liu, L.W. Lai
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • Y.B. Leng, R.X. Yuan, N. Zhang, Y.M. Zhou
    SSRF, Shanghai, People’s Republic of China
 
  Funding: Youth Innovation Promotion Association, CAS (Grant No. 2019290)
Bunch arrival time monitor (BAM) is an important tool to investigate the temporal characteristic of electron bunch in free electron lasers (FEL). Since the timing jitter of electron bunch will affect the FEL’s stability and the resolution of time-resolved experiment at FELs, it is nec-essary to precisely measure the electron bunch’s arrival time information to stabilize the electron bunch’s timing jitter using beam-based feedback. The BAM based on electro-optic modulator (EOM) is currently being devel-oping for Shanghai high-repetition-rate XFEL and Ex-treme light facility (SHINE). And the first BAM prototype has been installed on SXFEL for beam test. The beam test result shows that the estimated resolution of the pro-totype is about 27.5 fs rms.
 
poster icon Poster MOPAB278 [1.166 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB278  
About • paper received ※ 20 May 2021       paper accepted ※ 23 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB287 The Development of Single Pulse High Dynamic Range BPM Signal Detector Design at AWA detector, electron, experiment, electronics 909
 
  • E.M. Siebert, S. Baturin
    Northern Illinois University, DeKalb, Illinois, USA
  • D.S. Doran, G. Ha, W. Liu, P. Piot, J.G. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: the US Department of Energy, Office of Science
Single pulse high dynamic range BPM signal detector has been on the most wanted list of Argonne Wakefield Accelerator (AWA) Test Facility for many years. Unique capabilities of AWA beamline require BPM instrumentation with an unprecedented dynamic range, thus cost effective solution could be challenging to design and prototype. Our most recent design, and the results of our quest for a solution, are shared in this paper.
 
poster icon Poster MOPAB287 [1.372 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB287  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB291 Design of Cavity BPM Pickup for EuPRAXIA@SPARC_LAB cavity, coupling, GUI, simulation 924
 
  • Sh. Bilanishvili
    INFN/LNF, Frascati (Roma), Italy
 
  EuPRAXIA@SPARC_LAB will make available at LNF a unique combination offering three different options. A high-brightness electron beam with 1 GeV energy generated in a novel X-band RF linac; A PW-class laser system, and a compact light-source directly driven by a plasma accelerator*. Plasma and conventional RF linac driven FEL provide beam with parameters of 30- 200pC charge range, 10-100Hz repetition rate, and 1 GeV electron energy**. The control of the charge and the trajectory monitoring at a few pC and a few um is mandatory in this machine. Particularly in the plasma interaction region, where the pickup resolution under 1 um is required. As a possible solution, a cavity beam position monitor (cBPM) is proposed. A prototype in the C-band frequency range has been designed. The pickup was optimized for low charge and single-shot bunches. The poster presents the process to achieve the required specifications. The simulations were performed to study RF properties and the electromagnetic response of the device. Finally, the overall performance of the pickup is discussed, and theoretical resolution is approximated.
* https://www.researchgate.net/publication/335459394FromSPARCLABtoEuPRAXIASPARC_LAB
**http://www.lnf.infn.it/sis/preprint/detail-new.php?id=5416
 
poster icon Poster MOPAB291 [16.718 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB291  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB390 Development of a 166.6 MHz Low-Level RF System by Direct Sampling for High Energy Photon Source cavity, LLRF, controls, photon 1189
 
  • D.B. Li, H.Y. Lin, Q.Y. Wang, P. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work was supported by High Energy Photon Source, a major national science and technology infrastructure in China.
A digital low-level radio frequency (LLRF) system by direct sampling has been proposed for 166.6 MHz superconducting cavities at High Energy Photon Source (HEPS). The RF field inside the cavities has to be controlled better than ±0.1% (peak to peak) in amplitude and ±0.1 deg (peak to peak) in phase. Considering that the RF frequency is 166.6 MHz, which is well within the analog bandwidth of modern high-speed ADCs and DACs, direct RF sampling and direct digital modulation can be achieved. A digital LLRF system utilizing direct sampling has therefore been developed with embedded experimental physics and industrial control system (EPICS) in the field programmable gate array (FPGA). The performance in the lab has been characterized in a self-closed loop with a residual peak-to-peak noise of ±0.05% in amplitude and ±0.03 deg in phase, which is well below the HEPS specifications. Further tests on a warm 166.6 MHz cavity in the lab are also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB390  
About • paper received ※ 17 May 2021       paper accepted ※ 09 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB279 First Tests of Beam Position Monitor Electronics with Bunch Resolving Capabilities storage-ring, electron, FPGA, electronics 2124
 
  • G. Rehm, F. Falkenstern, J. Kuszynski, A. Schälicke
    HZB, Berlin, Germany
 
  We are reporting on first tests of a beam position monitor using 1 GS/s data streams of signals from a four button pickup. The system digitizes signals of ~2 GHz bandwidth using a choice of sampling frequency that realizes equivalent time sampling. The data is subsequently processed in the Fourier domain to unfold the aliased spectral lines and apply an impulse response correction per channel. After transforming back into time domain, individual bunch signals can be clearly identified and selected for further processing and decimation. The paper will provide detail on the hardware implementation and demonstrate the bunch resolving capabilities, long term stability and beam intensity dependence using beam tests in BESSY-II and synthetic signals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB279  
About • paper received ※ 18 May 2021       paper accepted ※ 06 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB296 LLRF Upgrade at the Argonne Wakefield Accelerator Test Facility LLRF, laser, controls, klystron 2176
 
  • W. Liu, D.S. Doran, G. Ha, P. Piot, J.G. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • L.R. Doolittle, D. Filippetto, D. Li, S. Paiagua, C. Serrano, V.K. Vytla
    LBNL, Berkeley, California, USA
 
  Funding: US Department of Energy, Office of Science
The Argonne Wakefiled Accelerator (AWA) Test Facility designed and operated a homemade LLRF system for the last 20 years. It is based on NI-PXI products that has now become obsolete. The AWA’s LLRF cannot keep up with the increasing stability demands of AWA’s upgraded facility. An overhaul of the system is strongly desired. With the support from DOE-HEP, the AWA is collaborating with Lawrence Berkeley National Laboratory (LBNL)to upgrade its LLRF system with modern instrumentation to meet the growing stability demands. An overview of AWA’s current LLRF system performance is presented together with the upgrade plan and expectations.
 
poster icon Poster TUPAB296 [1.943 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB296  
About • paper received ※ 19 May 2021       paper accepted ※ 05 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB299 Tuned Delay Unit for a Stochastic Cooling System at NICA Collider FPGA, kicker, controls, collider 2186
 
  • S.V. Barabin, T. Kulevoy, D.A. Liakin, A.Y. Orlov
    ITEP, Moscow, Russia
  • I.V. Gorelyshev, K.G. Osipov, V.V. Peshkov, A.O. Sidorin
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  Stochastic cooling is one of the crucial NICA (Nuclotron-based Ion Collider fAcility) subsystems. This system requires fine tuning of the response delay to the kicker, for both longitudinal and transverse stochastic cooling systems. The use of a digital delay line allows to add additional features such as a frequency dependent group velocity correction. To analyse the capabilities of the digital delay unit, a prototype of the device was created and tested. The article presents the characteristics of the prototype, its architecture and principle of operation, test results and estimations for the future developments.  
poster icon Poster TUPAB299 [0.493 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB299  
About • paper received ※ 17 May 2021       paper accepted ※ 10 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB339 High Power Test of the Antenna Adjustable Power Coupler for 325 MHz Superconducting Cavities cavity, vacuum, multipactoring, electron 2286
 
  • J.Y. Yoon, E.-S. Kim, C.S. Park, S.H. Park
    KUS, Sejong, Republic of Korea
  • J. Bahng
    Korea University Sejong Campus, Sejong, Republic of Korea
  • E. Kako
    KEK, Ibaraki, Japan
  • K.R. Kim
    PAL, Pohang, Republic of Korea
 
  Funding: The Ministry of Education (South Korea)
The power coupler is development at Korea University for a Single Spoke Resonator (SSR) of heavy ion accelerator. Our power coupler is a coaxial capacitive type based on a conventional 3-1/8 inch electronic industries alliance (EIA) 50 Ω coaxial transmission line with a titanium nitride (TiN) coated single ceramic window. A high power test is rectangular test cavity with high vacuum and various measuring equipment, such as an arc detector, a power meter, and an electron pick-up probe. The interlock system under vacuum and arc instrumentations prevent the RF window from breaking the power coupler window during the high power test. We conduct high power tests for more than 12 hrs at 12 kW in a 325 MHz continous wave (CW) mode to verify the performance of the designed power coupler.
*Superconducting, *Power Coupler
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB339  
About • paper received ※ 12 May 2021       paper accepted ※ 21 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB401 Mechanical Design, Fabrication and Characterization of Electron Beam Position Monitors for Sirius operation, vacuum, impedance, storage-ring 2461
 
  • R. Defavari, O.R. Bagnato, M.W.A. Feitosa, F.R. Francisco, G.R. Gomes, D.Y. Kakizaki, R.L. Parise, R.D. Ribeiro
    LNLS, Campinas, Brazil
 
  Beam Position Monitors were designed and manufactured to meet Sirius operation requirements. Final dimensional accuracy and stability of the BPM were achieved by careful specification of its components’ manufacturing tolerances and materials. AISI-305 Stainless Steel was used for the BPM support fabrication due to magnetic and thermal expansion constraints. High purity molybdenum for the electrode pin and Ti6Al4V F136 G23 alloy for housing was used to manufacture the sensor components for their thermal characteristics. The electrical insulator was made of high alumina. The materials were joined by an active metal brazing process using 0,01mm accurate fixtures. The brazed sensors were subjected to dimensional, mechanical, and metallurgical testing, as well as leak detection and optical microscopy inspection at each stage. The sensors were joined in Ti6Al4V F136 BPM bodies using TIG welding. Dimensional sorting was used to choose groups of sensors-to-body, and body-to-support pairs during the final assembly. 160 BPMs are currently in operation on Sirius storage ring. In this contribution, we present the results of BPM manufacturing and testing processes developed for Sirius.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB401  
About • paper received ※ 18 May 2021       paper accepted ※ 31 May 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)