

FOFB System Upgrade to ZynqMP FPGA with Fast ORM Measurement

Simin Chen, Y.-R. Eugene Tan Australian Synchrotron – ANSTO, Clayton, Australia

The FOFB processor has been ported from a Vertex 6 FPGA to a ZynqMP SoC (System on Chip) to provide additional resources to include a system, called the enhanced orbit diagnostics (EOD) system, to inject sinusoidal and pink noise through the feedback loop. The amplitude, duration, phase and

Parameter	Value
Amplitude resolution	0.5 mA (PSU resolution)
PRBS Duration Min / Max / Resolution	0.1 s / 10 s / 0.001 s
PRBS Amplitude Max	1.0 A
Sinusoidal Duration Min / Max / Resolution	0.1 s / 10 s / 0.001 s
Sinusoidal Amplitude Max	1.0 A
Sinusoidal Amplitude Accuracy (std)	0.5%
Sinusoidal Frequency Min / Max / Resolution	1.0 Hz / 10 kHz / 0.001 Hz
Sinusoidal Frequency Accuracy (std)	0.005 Hz
Sinusoidal Phase Min / Max / Resolution	0 deg / 360 deg / 1 deg
Sinusoidal Delay Min / Max / Resolution	0 s / 10 s / 0.001 s

frequency of sinusoidal, amplitude and duration of pink noise is user programmable.

Platform

- Trenz Electronics TE0808 system-on-module is selected to replace the legacy Xilinx Virtex 6 FPGA.
- This module is equipped with a Xilinx Zyng UltraScale+ XCZU9EG-1FFVC900E and 4 GByte on-module DDR4 RAM for the embedded 4 cores ARM Cortex-A53 CPUs. The FPGA portion of this chip is \sim 7 times larger than the replaced one.

Pink Noise (PRBS generator) and Sinusoidal Driver

f = 173 Hz f = 173 Hz No FOFB FOFB Harmonic Onl FOFB Full

Excitation with and without FOFB

• Noise or sin signal can be applied with or without the FOFB system running in parallel.

Enhanced Orbit Diagnostics (EOD)

- EOD runs parallel to the FOFB system. Driving fast correctors with a sinusoidal signal or pink noise.
- Real-time data stream of the fast corrector output ulletvalues from the FOFB + EOD system is sent to two virtual PCs for spectral analysis and data archiving.
- Using M. Abbot's FA Archiver (DLS) to archive the position and corrector data at 10058 Hz.

- Harmonic suppressors: 50, 100 and 300 Hz.
- For system response analysis and research into

10' (2 10³ 10² 10 FFT cosine window + FFT 10⁻¹ 1000 1050 1200 1100 1150 1250 1300 Frequency (Hz)

Fast ORM

- Typical ORM measurements take 7 mins (420 s).
- In serial measurements with 1 s duration takes \sim 140 s.
- 7 parallel measurements, ~25 s.
- Analysis following method by Z. Marti.

Issues to resolve to date

- With no absolute synchronization between drive and acquisition there is a sign ambiguity in the data analysis.
- Parallel ORM measurements with a 10 Hz frequency separation may have appreciable crosstalk.
- Fast ORM response matrices are not as "clean". Current analysis methods needs refinement.

FOFB & EOD shared devices and data flows

system architecture

220 200

180

160

140

Ê 120

× 100

Time (ms)

References

15

Abbott, M.G., Rehm, G. and Uzun, I.S., 2011. A new fast data logger and viewer at diamond: the FA archiver. Proceedings of ICALEPCS2011, Grenoble, France, pp.1244-1246.

Martí, Z., Benedetti, G., Carlà, M., Fraxanet, J., Iriso, U., Moldes, J., Olmos, A. and Petrocelli, R., 2017, May. Fast orbit response matrix measurements at ALBA. In 8th Int. Particle Accelerator Conf.(IPAC'17), Copenhagen, Denmark, 14â 19 May, 2017 (pp. 365-367). JACOW, Geneva, Switzerland.

+61 2 9717 3111 enquiries@ansto.gov.au www.ansto.gov.au

Synchronisation For Data Collection

- No synchronization scheme built into the system to collect Fast Acquisition (FA) data.
- Using local PC time to log start times then \bullet requesting data from FA Archiver.
- Accuracy measured to be approx. ± 1 ms.