The FOFB processor has been ported from a Vertex 6 FPGA to a ZynqMP SoC (System on Chip) to provide additional resources to include a system, called the enhanced orbit diagnostics (EOD) system, to inject sinusoidal and pink noise through the feedback loop. The amplitude, duration, phase and frequency of sinusoidal, amplitude and duration of pink noise is user programmable.

Platform
- Trenz Electronics TE0808 system-on-module is selected to replace the legacy Xilinx Virtex 6 FPGA.
- This module is equipped with a Xilinx Zynq UltraScale+ XCZU9EG-1FFVC900E and 4 GByte on-module DDR4 RAM for the embedded 4 cores ARM Cortex-A53 CPUs. The FPGA portion of this chip is ~7 times larger than the replaced one.

Enhanced Orbit Diagnostics (EOD)
- EOD runs parallel to the FOFB system. Driving fast correctors with a sinusoidal signal or pink noise.
- Real-time data stream of the fast corrector output values from the FOFB+EOD system is sent to two virtual PCs for spectral analysis and data archiving.
- Using M. Abbot’s FA Archiver (DLS) to archive the position and corrector data at 10058 Hz.

Excitation with and without FOFB
- Noise or sin signal can be applied with or without the FOFB system running in parallel.
- Harmonic suppressors: 50, 100 and 300 Hz.
- For system response analysis and research into parameters with and without FOFB.

Fast ORM
- Typical ORM measurements take 7 mins (420 s).
- In serial measurements with 1 s duration takes ~140 s.
- 7 parallel measurements, ~25 s.
- Analysis following method by Z. Marti.

Issues to resolve to date
- With no absolute synchronization between drive and acquisition there is a sign ambiguity in the data analysis.
- Parallel ORM measurements with a 10 Hz frequency separation may have appreciable crosstalk.
- Fast ORM response matrices are not as “clean”. Current analysis methods needs refinement.

Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude resolution</td>
<td>0.5 mA (PSU resolution)</td>
</tr>
<tr>
<td>PRBS Duration Min / Max / Resolution</td>
<td>0.1 s / 10 s / 0.001 s</td>
</tr>
<tr>
<td>PRBS Amplitude Max</td>
<td>1.0 A</td>
</tr>
<tr>
<td>Sinusoidal Duration Min / Max / Resolution</td>
<td>0.1 s / 10 s / 0.001 s</td>
</tr>
<tr>
<td>Sinusoidal Amplitude Max</td>
<td>1.0 A</td>
</tr>
<tr>
<td>Sinusoidal Amplitude Accuracy (std)</td>
<td>0.5%</td>
</tr>
<tr>
<td>Sinusoidal Frequency Min / Max / Resolution</td>
<td>1.0 Hz / 10 kHz / 0.001 Hz</td>
</tr>
<tr>
<td>Sinusoidal Frequency Accuracy (std)</td>
<td>0.005 Hz</td>
</tr>
<tr>
<td>Sinusoidal Phase Min / Max / Resolution</td>
<td>0 deg / 360 deg / 1 deg</td>
</tr>
<tr>
<td>Sinusoidal Delay Min / Max / Resolution</td>
<td>0 s / 10 s / 0.001 s</td>
</tr>
</tbody>
</table>

Synchronisation For Data Collection
- No synchronization scheme built into the system to collect Fast Acquisition (FA) data.
- Using local PC time to log start times then requesting data from FA Archiver.
- Accuracy measured to be approx. ±1 ms.

References

Figure 1: Simplified FOFB & EOD system architecture

Figure 2: Figure showing the synchronization for data collection.