Paper | Title | Page |
---|---|---|
MOXAA1 | Commissioning of the European XFEL Accelerator | 1 |
|
||
The European XFEL uses the world's largest superconducting RF installation to drive three independent SASE FELs. After eight years of construction the facility is now brought into operation. First experience with the superconducting accelerator as well as beam commissioning results will be presented. The path to the first user experiments will be laid down. | ||
![]() |
Slides MOXAA1 [22.967 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOXAA1 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOAA1 |
Hard X-ray FEL Lasing Through BBA and Radiation Spectrum Analysis | |
|
||
Commissioning of PAL-XFEL started in April 2016 after its completion of building construction in 2014 and installation in 2015. Saturation of 0.15 nm FEL in the hard X-ray line was successfully done on 27 November 2016, followed by saturation of 15 nm FEL in the soft X-ray FEL line on February 2, 2017. For lasing of hard x-ray FEL a beam based alignment method and an undulator optimization scheme using undulator radiation spectrum analysis are fully exploited. In this paper we present the results of both schemes as well as the performance of FEL radiation. | ||
![]() |
Slides TUOAA1 [2.810 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOAA2 | A Soft X-Ray Free-Electron Laser Beamline of SACLA | 1209 |
|
||
At the Japanese x-ray free-electron laser (FEL) facility, SACLA, the beamline-1 has been upgraded from a spontaneous radiation to a soft x-ray FEL beamline, which generates FEL lights over a wide wavelength range from the extreme-ultraviolet to the soft x-ray regions. We started operation for users in July 2016. A dedicated accelerator, which is a refinement of the SCSS test accelerator operated in 2005-2013, was installed beside the XFEL beamlines in the SACLA undulator hall. The SCSS concept to make an FEL facility compact was continuously adopted. In the 2016 summer shutdown period, the beam energy was upgraded from 500 MeV to 800 MeV by adding two C-band rf units. The maximum K-value of the undulator magnet is 2.1. The available wavelengths of the FEL lights were extended to the range from 8 to 50 nm with pulse energies between a few to few tensμJ at an operational repetition rate of 60 Hz. In this conference, we will report an overview of the upgraded SACLA-beamline-1 and characteristics of the FEL light pulse. | ||
![]() |
Slides TUOAA2 [15.457 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOAA2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZA1 |
Commissioning of the Swiss FEL | |
|
||
The Swiss FEL commissioning has started in 2016. SwissFEL consists of a 5.8 GeV Linac in C band technology feeding two FEL lines. The talk gives an overview over the challenges and achievements during design, construction and commissioning of the facility. Results of first FEL lasing are reported. | ||
![]() |
Slides WEZA1 [20.347 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEZA2 |
Polarization Control in High Gain Free Electron Lasers | |
|
||
Funding: Italian-Slovenian Crossborder Programme, Slovenian Research Agency, Volkswagen Foundation, LOEWE-Focus ELCH, Triangle de la Physique, Italian Ministry of University and Research. Methods for the control of polarization of the radiation emitted in high gain free electron lasers (FELs) are recalled. The first demonstration of full polarization control in the extreme ultra-violet at FERMI FEL is presented, and the polarization characterized by three independent instruments and methods. The measured radiation polarization is consistently > 90%; observed effects of photon beam transport from the undulator to the radiation detectors is discussed. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.* * E. Allaria et al., PRX 4, 041040 (2014) |
||
![]() |
Slides WEZA2 [41.915 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB001 | Parallel Operation of SASE1 and SASE3 Undulator Sections of European XFEL | 2554 |
|
||
In the current paper the numerical simulation results for parallel (decoupled) operation of SASE1 and SASE3 undulator sections of European XFEL are presented. The study was based on the idea of betatron switcher imple-mentation. It was shown that it is possible to avoid energy spread growth in SASE1 and to reach the saturation in SASE3 in desirable range of radiation wavelengths by a trajectory kick before SASE1 and its correction before SASE3. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB001 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB015 | Parameter Optimization for Operation of sFLASH With Echo-Enabled Harmonic Generation | 2592 |
|
||
The free-electron laser facility FLASH has a dedicated experimental setup for external FEL seeding applications for the XUV and soft x-ray spectral range. Recently the setup is operated as high-gain harmonic generation FEL. Furthermore, it also allows the operation of echo-enabled harmonic generation (EEHG). A versatile laser injection system allows operation with seed wavelength in the infra-red, visible, and ultra-violet. Here, we present the parameter optimization for operating the seeding setup with EEHG. First experimental tests are planned in the first half of 2017. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB016 | Experience in Operating sFLASH With High-Gain Harmonic Generation | 2596 |
|
||
sFLASH, the experimental setup for external seeding of free-electron lasers (FEL) at FLASH, has been operated in the high-gain harmonic generation (HGHG) mode. A detailed characterization of the laser-induced energy modulation, as well as the temporal characterization of the seeded FEL pulses is possible by using a transverse deflecting structure and an electron spectrometer. FEL saturation was reached for the 7th harmonic of the 266 nm seed laser. In this contribution, we present the latest experimental results. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB016 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB017 | Generation of Ultra-Short Electron Bunches and FEL Pulses and Characterization of Their Longitudinal Properties at FLASH2 | 2600 |
|
||
The free-electron laser in Hamburg (FLASH) is a user facility, delivering soft X-ray radiation, consisting of two beam lines, FLASH1 and FLASH2. The injector and the main linac are shared between both beam lines. Starting in 2014, FLASH2 has been commissioned for user operation. Currently, there is no hardware installed for the direct measurement of the electron bunch length nor the photon pulse duration at FLASH2. Exact knowledge of the pulse duration is essential for time-resolved user experiments performed at FLASH. Therefore, we are designing a modified beam line, containing a new type of X-band deflecting cavity* and a dipole, downstream of the FLASH2 undulator, to map the longitudinal phase space onto a beam screen. Anticipating the feasibility of measuring the longitudinal phase space with high resolution, a study on optimizing the free-electron laser (FEL) performance for shortest bunches is ongoing.
*B. Marchetti et al., X-Band TDS project, contribution to these conference proceedings |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB017 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB018 | Engineering Collaboration Experience at the European XFEL | 2604 |
|
||
The construction of the European XFEL involved a huge internationally distributed and inter-disciplinary engineering effort. This paper discusses examples for good engineering practices which have been successfully developed and applied in the construction of the European XFEL. It addresses appropriate combination of de-/central activities in design collaboration and integration; the use of manufacturing bills of materials for coordinating and tracking contributions, as well as for clarifying responsibilities; the right amount of reviews for keeping activities in synch; some specific needs of and measures for in-kind collaboration; and general methods, tools and practices and spirit for efficient communication and collaboration. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB018 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB019 | Concept for a Seeded FEL at FLASH2 | 2607 |
|
||
The free-electron laser (FEL) FLASH is a user facility delivering photon pulses down to 4 nm wavelength. Recently, the second FEL undulator beamline 'FLASH2' was added to the facility. Operating in self-amplified spontaneous emission (SASE) mode, the exponential amplification process is initiated by shot noise of the electron bunch, resulting in photon pulses of limited temporal coherence. In seeded FELs, the FEL process is initiated by coherent seed radiation, improving the longitudinal coherence of the generated photon pulses. The conceptual design of a possible seeding option for the FLASH2 beamline foresees the installation of the hardware needed for high-gain harmonic generation (HGHG) seeding upstream of the already existing undulator system. In this contribution, we present the beamline design and numerical simulations of the seeded FEL. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB020 | Beam Loss Simulations for the Implementation of the Hard X-Ray Self-Seeding System at European XFEL | 2611 |
|
||
The European XFEL is designed to be operated with a nominal beam energy of 17.5 GeV at a maximum repetition rate of 27000 bunches/second. The high repetition rate together with the high loss sensitivity of the undulators raises serious radiation damage concern, especially for the implementation of the Hard X-ray Self-Seeding (HXRSS) system, where a 100 um thick diamond crystal will be inserted close to the beam in the undulator section. Since the seeding power level highly depends on the delay of the electron beam with respect to the photon beam, it is crucial to define the minimum electron beam offset to the edge of the crystal in the HXRSS chicane. At European XFEL a ~200 m long post-linac collimation section has been designed to protect the undulators. In the HXRSS scheme, however, beam halo hitting the crystal can generate additional radiation. Particle tracking simulations have been performed using GEANT4 and BDSIM for the undulator and the collimation section, respectively. The critical number of electrons allowed to hit the crystal is estimated for a certain operation mode and the efficiency of beam halo collimation is investigated to predict the minimum HXRSS chicane delay. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB021 | Experience with Multi-Beam and Multi-Beamline FEL-Operation | 2615 |
|
||
DESY's free-electron laser FLASH provides soft X-ray pulses for scientific users at wavelengths down to 4 nm simultaneously in two undulator beamlines. They are driven by a common linear superconducting accelerator with a beam energy of up to 1.25 GeV. The superconducting technology allows the acceleration of electron bunch trains of several hundred bunches with a spacing of 1 microsecond or more and a repetition rate of 10 Hz. A fast kicker-septum system directs one part of the bunch train to FLASH1 and the other part to FLASH2 keeping the full 10 Hz repetition rate for both. The unique setup of FLASH allows independent FEL pulse parameters for both beamlines. In April 2016, simultaneous operation of FLASH1 and FLASH2 for external users started. This paper reports on our operating experience with this type of multi-beam, multi-beamline set-up. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB022 | Background-free Harmonic Production in XFELs via a Reverse Undulator Taper | 2618 |
|
||
Nonlinear harmonics in X-ray FELs can be parasitically produced as soon as FEL reaches saturation, or can be radiated in dedicated afterburners. In both cases there is a strong background at the fundamental, since it is much stronger than harmonics. One can get around this problem by application of the recently proposed reverse undulator tapering. In this contribution we present numerical simulations of harmonic production in such a configuration as well as recent results from FLASH where the second and the third harmonics were efficiently generated with a low background at the fundamental. We also present the results for a high-contrast operation when the afterburner is tuned to the fundamental. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB022 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB023 | First Operation of a Harmonic Lasing Self-Seeded FEL | 2621 |
|
||
Harmonic lasing is a perspective mode of operation of X-ray FEL user facilities that allows to provide brilliant beams of higher energy photons for user experiments. Another useful application of harmonic lasing is so called Harmonic Lasing Self-Seeded Free Electron Laser (HLSS FEL) that allows to improve spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with Self-Amplified Spontaneous emission (SASE) FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at a short wavelength paves the way for a variety of applications of this new operation mode in X-ray FELs. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB023 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB024 | Commissioning and First Heating with the European XFEL Laser Heater | 2625 |
|
||
Funding: We thank DESY and Swedish research council under Project number DNR-828-2008-1093 for financial support. The Laser Heater of the European XFEL has been installed and commissioning is in progress. We discuss the setup and the results of the first electron beam heating in the injector section. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB024 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB025 | Status of the Soft X-Ray Free Electron Laser FLASH | 2628 |
|
||
The superconducting free-electron laser user facility FLASH at DESY in Hamburg, routinely produces several thousand photon pulses per second. The operational parameters cover a wavelength range from 90 nm down to 4 nm with pulse energies from several uJ up to 1 mJ and with pulse durations of several hundred fs down to a few fs. The FLASH injector and linac drives two undulator beam lines (FLASH1, FLASH2) and therefore FLASH is capable of serving 2 independent experiments with photon pulse (sub-) trains of several 100 bunches at the full train repetition frequency of 10 Hz. We summarize here the highlights of the user operation at FLASH1/2 and the study program (machine development and FEL optimization) of the FLASH facility. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB025 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB027 | Frequency Doubler and Two-color Mode of Operation at Free Electron Laser FLASH2 | 2635 |
|
||
We report on the results of the first operation of a frequency doubler at free electron laser FLASH2. The scheme uses the feature of the variable gap undulator. Undulator is divided in two parts. The second part of the undulator is tuned to the double frequency of the first part. Amplification process in the first undulator part is stopped at the onset of the nonlinear regime, such that nonlinear higher harmonic bunching in the electron beam density becomes pronouncing, but the radiation level is still small to disturb the electron beam significantly. Modulated electron beam enters the second part of the undulator and generates radiation at the 2nd harmonic. Frequency doubler allows operation in a two-color mode and operation at shorter wavelengths with respect to standard SASE scheme. Tuning of the electron beam trajectory, phase shifters and compression allows to tune intensities of the first and the second harmonic. The shortest wavelength of 3.1 nm (photon energy 400 eV) has been achieved with frequency doubler scheme, which is significantly below the design value for the standard SASE option. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB027 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB029 | Optimum Undulator Tapering of SASE FEL: From the Theory to Experiment | 2639 |
|
||
Optimization of the amplification process in FEL amplifier with diffraction effects taken into account results in a specific law of the undulator tapering [*]. It is a smooth function with quadratic behavior in the beginning of the tapering section which transforms to a linear behavior for a long undulator. In practice, undulator consists of a sequence of modules of fixed length separated with intersections. Two modes of undulator tapering can be implemented: step tapering, and smooth tapering. Procedure of the step tapering applies step change of the undulator gap from module to module, and smooth tapering assumes additional linear change of the gap along each module. In this report we simulate the performance of the both experimental options and compare with theoretical limit.
[*] E.A. Schneidmiller and M.V. Yurkov, Optimization of a high efficiency free electron laser amplifier, Phys. Rev. ST Accel. Beams 18 (2015) 030705. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB029 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB031 | OCELOT as a Framework for Beam Dynamics Simulations of X-Ray Sources | 2642 |
|
||
We describe the OCELOT open source project focusing on new beam dynamics simulation capabilities of the whole machine in modern electron-based x-ray sources. Numerical approaches for particle tracking and field calculations are discussed. In developing of the full-dimensional numerical modeling we pursue two important competitive aspects: the simulation has to be fast and has to include accurate estimations of collective effects. The simulation results for the European XFEL [1] are presented. The results have been benchmarked agains other codes and some of such benchmarks are shown. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB031 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB032 | A Novel Optical Beam Concept for Producing Coherent Synchrotron Radiation with Large Energy Spread Beams | 2646 |
|
||
Up to now two FEL concepts are known in conventional accelerators: 1.) In THz lasers an off-crest cavity adds a chirp to the bunch followed by a bunch compressor. Particles with different energies travel on different trajectories to the radiator. 2.) For EUV and X-ray FELs the beam enters an undulator which produces microbunches which then radiate. In this paper it is proposed to copy the THz laser scheme for EUV lasers. The incoming beam is chirped and a dogleg forces afterwards the particles with different energies to move on different parallel trajectories. Considering a detector plane perpendicular to the trajectories the particles with different energies arrive in general at different times. When in this plane for instance a TGU (Transverse Gradient Undulator) is positioned the emitted radiation in the TGU is monochromatic. If in addition chirp and dogleg are selected in such a way that the particles with different energies arrive at the same time at the entrance of the TGU the radiation is monochromatic and coherent similar to the THz laser concept. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB032 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB033 | Experimental Optimization and Characterization of Electron Beams for Generating IR/THz SASE FEL Radiation with PITZ | 2650 |
|
||
The Photo Injector Test facility at DESY, Zeuthen site (PITZ), develops high brightness electron sources for modern linac-based Free Electron Lasers (FELs). The PITZ accelerator can also be considered as a suitable machine for the development of an IR/THz source prototype for pump-probe experiments at the European XFEL. One of the interesting options for the IR/THz generation with PITZ is to generate the radiation by means of a SASE FEL using an uncompressed electron beam with bunch length of a few 10 ps and a peak current of ~200 A. In this paper, results of experimental optimizations and characterizations, including transverse phase space, slice transverse emittance and longitudinal phase space, of electron beams with bunch charges of 4 nC are presented and discussed. The measurements were done with beam momenta of 15 MeV/c and 22 MeV/c. Results of IR/THz SASE FEL calculations by using the GENESIS1.3 code based on the measured beam parameters are also presented and discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB033 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB034 | Control of Seeded FEL Pulse Duration Using Laser Heater Pulse Shaping | 2654 |
|
||
New Free-Electron Laser facilities deliver VUV and X-ray radiation with pulse length in the range of hundreds and tens of fs. A further reduction of the FEL pulse length is desired by those experiments aiming at probing ultrafast phenomena. Unlike SASE FEL, where the pulse duration is mainly driven by the electron bunch duration, in a seeded FEL the pulse duration can be determined by the seed laser properties. The use of techniques able to locally deteriorate the electron beam properties such as emittance or energy spread have been used in SASE FELs to reduce the region of the electron beam that is able to produce FEL radiation and hence reduce the FEL pulse length. The temporal shaping of the laser heater can be used to create an electron beam characterized by a very large energy spread all along the bunch except for a small region. We report measurements of the effect of the laser heater shaping on the electron beam phase-space performed at FERMI. Impact on the final FEL pulse properties are predicted with a series of numerical simulations. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB034 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB037 | Two-Bunch Operation at the FERMI FEL Facility | 2663 |
|
||
FERMI is a linac-driven free electron laser (FEL) based upon the High Gain Harmonic Generation (HGHG) scheme. In standard conditions a bunch of 700 pC of charge with sub mm-mrad emittances is accelerated to 1.2-1.5GeV in a normal conducting S-band linac and drives FEL-1 or FEL-2 undula-tor line, which lase respectively in the range 100-20nm or 20-4nm. A number of two-color schemes have been implemented at FERMI for pump/probe experiments, all consisting in making two portions of the same electron bunch lase at two different wavelengths, with a time-separation from 0 to few hundreds of fs. In order to increase the time separation to ns and tens of ns we have explored the acceleration of two inde-pendent electron bunches separated by multiple of the linac main radio-frequency period, i.e. 333ps. Measure-ments and characterization of this two-bunch mode oper-ation are presented, including trajectory control, impact of longitudinal and transverse wakefields on the trailing bunch and manipulation of the longitudinal phase space. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB037 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB039 | Development Perspectives at FERMI | 2666 |
|
||
FERMI is the seeded Free Electron Laser (FEL) user facility at the Elettra laboratory in Trieste, operating in the ultraviolet to soft X-rays spectral range; the radiation produced by the seeded FEL is characterized by a number of desirable properties, such as wavelength stability, low temporal jitter and longitudinal coherence. In this paper, after an overview of the FEL performances, we will present the development plans under consideration for the next 3 to 5 years. These include an upgrade of the linac and of the existing FEL lines, the possibility to perform multipulse experiments in different configurations and an Echo Enabled Harmonic Generation (EEHG) experiment on FEL-2, the FEL line extending to 4 nm (310 eV). | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB039 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB058 | Commissioning Status of the Dalian Cohernet Light Source | 2709 |
|
||
The Dalian Coherent Light Source (DCLS) is a seeded FEL user facility working at 50-150 nm, now under commissioning in Dalian, China. The facility consists of a 300 MeV normal-conducting S-band linear accelerator (LINAC) and two undulator beamlines. The first beam-line (FEL-1) will provide picosecond FEL radiation with the pulse energy up to several hundreds micro-joule, the second beam-line (FEL-2) will be a femtosecond and polarization FEL. The LINAC and FEL-1 beam-line construction was complete by the summer of 2016, the installation of FEL-2 is in preparation. High power RF conditioning of the LINAC started in August 2016 and the beam commissioning initiated 3 months later. This article describes the commissioning status of DCLS, reports on the goals achieved so far. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB058 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB065 | Proposal for the Generation of Terawatt, Attosecond X-Ray Pulses in Free Electron Lasers | 2723 |
|
||
A feasible novel method is proposed to generate attosecond terawatt X-ray radiation pulse in free electron lasers, which could find its application on multiple science fields. In our scheme, a chirped laser is employed to generate a chirped periodic current enhancement and a series of spatiotemporal shifters are applied between the undulator sections to generate ultra-short radiation pulse. Three-dimensional start-to-end simulations are carried out and the calculation results show that a 0.15nm X-ray pulse with the peak power of about 1TW and the pulse length of 0.1fs could be achieved in our scheme. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB065 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB066 | POP Experiment for the HB-HGHG Scheme at SXFEL | 2727 |
SUSPSIK010 | use link to see paper's listing under its alternate paper code | |
|
||
Abstract High brightness, fully coherent and ultra-short free electron lasers (FEL) operating in the soft x-ray region are opening up new frontiers in many scientific fields. In this paper, we perform the design studies for the proof-of-principle experiment of the recently proposed HB-HGHG scheme at SXFEL test facility with a two-stage setup. The first stage of SXFEL is used for the generation of the coherent signal at 30th harmonic of the seed through the coherent harmonic generation process. Then this coherent signal is shifted ahead by the 'fresh bunch' chicane of SXFEL and initiates the strong coherent radiation in the radiator of the second stage of SXFEL. The output properties have been compared with the conventional EEHG and the two-stage cascaded HGHG with the same harmonic up-conversion number. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB066 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB070 | Study of ESASE Scheme with Microbunching Instability for Generating Attosecond-Terawatt X-Ray Pulse in XFELs | 2741 |
SUSPSIK011 | use link to see paper's listing under its alternate paper code | |
|
||
Recent studies show that the attosecond-terawatt X-ray pulse in XFELs can be generated by using ESASE (enhanced self-amplified spontaneous emission) scheme to obtain a sub-femtosecond spike in the electron peak current. However, ESASE scheme is not working properly when the microbunching instability is taken into account. The instability can be suppressed when the laser heater system which increases the uncorrelated energy spread of the electron beam is used in the injector. The effect of the microbunching instability on the performance of ESASE scheme will be discussed. In addition, the optimized results with the laser heater system for generating attosecond-terawatt X-ray pulse in XFELs is also presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB070 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB074 | On the Coherence Properties of FEL | 2753 |
SUSPSIK012 | use link to see paper's listing under its alternate paper code | |
|
||
Free Electron Lasers (FEL) are one of the most brilliant light sources in the world and their unique properties are driving worldwide research in understanding and improving them. Numerous papers have already been published describing the output of the FEL in terms of coherence and bandwidth. In this contribution, however, we focus on how the coherence evolves along the FEL undulator and on what factors influence it the most. Using Genesis−1.3* we have been able to follow and record the light field as it is being produced in the undulator. Our analysis method takes advantage of the extensively studied double pinhole experiment and uses the principles behind it to create a tool for extracting coherence information from the radiation field. We will present the scope, limitations and advantages of these virtual experiments as well as an application on an example FEL, to showcase what kind of information can be extracted using this method.
* Numerical simulation code used for particle and field distribution tracking along the undulator developed by Sven Reiche |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB074 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB077 | The Soft X-Ray Laser Project at MAX IV | 2760 |
|
||
A soft x-ray laser beamline utilising FEL technology is being designed for the Short Pulse Facility (SPF) at the MAX IV Laboratory. A conceptual design study has been started following on the scientific case already prepared in collaboration between several Swedish Universities and driven by a strong (Swedish) user demand [*]. The baseline goal of the SXL beamline is to generate intense and short pulses in the range 1-5 nm (1-0.2 keV). The system is building on the MAX IV linac system, already today providing 3 GeV and pulses compressed to 100 fs for other applications within the SPF. As a special feature we foresee a variety of pump-probe capabilities. We here describe design issues and solutions for the accelerator and FEL system.
* http://frielektronlaser.se/onewebmedia/SXLsciencecase161102.pdf |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB077 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB083 | Development of Linac-Based MIR/THz FEL Facility and Photocathode RF-gun in Thailand | 2763 |
|
||
A linac-based MIR/THz free-electron laser facility is under the development at the Plasma and Beam Physics Research Facility, Chiang Mai University. The ultimate goal of the project is to generate the infrared radiation covering the wavelengths from 13 to 125 μm. The main applications of the radiation involved MIR/THz imaging and spectroscopy. The future FEL facility will consists of an injector system, an experimental station for coherent transition radiation, two magnetic bunch compressors and two undulator magnets equipped with optical cavities for MIR and THz beamlines. An expected electron beam energy is between 10 to 20 MeV with an energy spread of about or less than 1 %. Two undulator magnets with maximum undulator parameters of 1 and 0.95 will be used for generation of the THz-FEL and MIR-FEL, respectively. In this paper, we present the status of the design and construction of this future FEL facility. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB083 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB084 | Development of Injector System for MIR/THz Free-Electron Laser Facility in Thailand | 2767 |
SUSPSIK013 | use link to see paper's listing under its alternate paper code | |
|
||
Development of a linac-based MIR/THz FEL light source is ongoing at the Plasma and Beam Physics Research Facility, Chiang Mai University. The future facility will consist of an S-band thermionic cathode RF electron gun, a pre-magnetic bunch compressor in a form of alpha magnet, an S-band travelling-wave linac structure, a 180-degree achromat system and two undulator magnets equipped with optical cavities. This research focuses on start-to-end beam dynamics simulations of the injector system. The aim of the study is to produce high quality electron beam at the entrance of the THz undulator magnet. The simulation was conducted by using programs PARMELA and ELEGANT. The program PARMELA was utilized to study the electron beam dynamics inside the RF-gun. Then, the program ELEGANT was used to optimize the injector system parameters. Optimization of physical specifications for the achromat system was performed to obtain short electron bunches with small energy spread at the undulator entrance. In this paper, results of beam dynamics simulations with suitable condition for the THz-FEL beamline are presented and discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB084 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB087 | TARLA: The First Facility of Turkish Accelerator Center (TAC) | 2776 |
|
||
Funding: Work supported by Ministry of Development of Turkey Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) is proposed as first accelerator based infrastructure in Turkey as a first step Turkish Accelerator Center (TAC). The facility under construction at Institute of Accelerator Technologies of Ankara University since 2012. Based superconducting technology, TARLA accelerator will offer a multi-experiment facility providing various accelerator-based radiation sources for the users coming from different fields like physics, chemistry, biology, material sciences, medicine and nanotechnology. Two of the planed free-electron laser (FEL) beamlines of TARLA will provide Continuous Wave (CW) tunable radiation of high brightness in the mid- and far-infrared regime. In addition a Bremmstrahlung radiation station is proposed within current scope of TARLA. In this paper current status of facility is presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB087 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB088 | Dark Current Studies in the CLARA Front-End Injector | 2779 |
SUSPSIK014 | use link to see paper's listing under its alternate paper code | |
|
||
At STFC Daresbury a new facility CLARA (Compact Linear Accelerator for Research and Applications) is being designed and constructed. The principal aim of CLARA is advanced Free Electron Laser research. Halo and dark current in CLARA is a concern for damage to the undulator, and other applications of the machine. Recently the front end (gun, diagnostics, first linac) of CLARA has been installed including some collimation to mitigate halo effects. Beam halo may arise from gun field emission or due to beam dynamics in the early stages of acceleration, which may achieve the same energy as the core beam and thus may be transported to the undulator. The code CST is used to study the gun field emission. The code ASTRA is used to study the transport of field emission through the front end, including the effectiveness of collimators. Machine measurements of dark current are compared against these simulations. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB088 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB089 | Design Study for the Generation of Few-Cycle FEL Pulses Using Mode-Locked Afterburner Scheme at Clara | 2783 |
SUSPSIK015 | use link to see paper's listing under its alternate paper code | |
|
||
Ultrashort pulse operation in FELs is a highly desirable capability for imaging matter on ultrafast timescales. This paper presents a design study for a proof-Âof-Âprinciple demonstration of the mode-locked afterburner (ML-AB) scheme on the FEL test facility CLARA. A start-to-end simulation has been constructed using the time-Âdependent three-Âdimensional FEL code GENESIS 1.3 to evaluate the performance of the scheme. The ability to produce pulses of several femtoseconds in duration with peak powers of the order of 100 MW at 100 nm wavelength is predicted. Such pulses have duration of 2 fs (6 optical cycles), a factor of ~5 shorter than the FEL cooperation length. Potential routes for further optimisation and alternative operating modes are explored. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB089 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB090 | Developments in the CLARA FEL Test Facility Accelerator Design and Simulations | 2787 |
|
||
We present recent developments in the accelerator design of CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. The requirement to co-propagate the beam with laser seeds of very different wavelengths has led to a redesign of the section preceding the undulators, with a dogleg being replaced by a chicane. Additional refinements of the facility design include the inter-undulator sections. With this finalised design we show start to FEL simulations for all beam modes envisaged. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB090 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB097 | Modelling Two-Colour FEL with Wide Wavelength Separation and Individual Polarisation Tuning | 2808 |
SUSPSIK016 | use link to see paper's listing under its alternate paper code | |
|
||
Free electron lasers (FELs) are currently enabling cutting edge research in chemistry, biology and physics. We use simulations to assess a new FEL capability that would add to the impressive repertoire of experiments made possible by the technology: a two-colour independent polarization mode, which allows for light pulses with variable temporal separation, individually tuneable polarisation, and widely separated wavelength. Simulations are carried out using the broad bandwidth FEL code Puffin, the results of which are used to discuss the radiation properties of the output. This scheme is applicable to existing and proposed facilities which feature undulators with variable ellipticity and gap. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB097 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB099 | Development of the Manufacturing and QA Processes for the LCLS-II Injector Source VHF Electron Gun | 2815 |
|
||
Funding: * This work is supported by the Office of Science, United States Department of Energy under DOE contract DE-AC02-05CH11231. The Linear Coherent Light Source-II (LCLS-II), a new free electron laser currently under construction at SLAC, requires a high repetition rate, high brightness, continuous wave electron source. Lawrence Berkeley National Laboratory (LBNL) has developed a design for a normal conducting VHF gun in response to that need and is responsible for its production and that of the associated beamline, with much of the fabrication done in-house. The 186 MHz copper cavity dissipates approximately 90 kW of RF power while maintaining a vacuum pressure on the order of 10-10 Torr. The gun is a critical component that requires a very high level of operational reliability to ensure uninterrupted availability for future system users. A quality assurance system to instruct manufacturing and change control is vital to ensure production of a gun that reliably meets physics requirements over an extended period of usage. This paper describes the QA processes developed for fabrication and assembly of the Injector Source electron gun along with results and lessons learned from their current implementation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB099 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB108 | Angular Trajectory Kicks in a High-Gain Free-Electron Laser | 2830 |
|
||
In a free-electron laser (FEL), transverse momentum offsets (or kicks) are introduced either inadvertently (through wakefields or mis-steering of the electron beam) or as part of dedicated schemes that require off-axis radiation propagation. Studying the influence of this effect on the performance of machines such as LCLS-I/II is critical both from a tolerance point of view and for its practical applications. A theoretical analysis of a high-gain FEL driven by such a kicked beam will be presented, with a critical evaluation of previous studies. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB108 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB109 | Multipole Field Effects in a Transverse Gradient Undulator | 2833 |
|
||
Using a transverse gradient undulator (TGU) is one of the methods proposed in order to enable the utilization of electron beams with large energy spread (such as those from plasma-based accelerators) in a free-electron laser (FEL). Most of the analytical treatments of this scheme assume a linear variation of the undulator field with one of the transverse coordinates. While this assumption leads to a simplified and more tractable model, including higher-order multipoles allows us to offer a more complete and rigorous description of the system. In this paper, we investigate the magnetic field components of a TGU using both theory and simulation and explore the impact of higher-order multipoles on the FEL performance. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB109 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB116 | LCLS Injector Laser Shaping and Applications | 2844 |
|
||
In the Linear Coherent Light Source (LCLS) at SLAC, the injector laser plays an important role as the source of the electron beam for the Free Electron Laser (FEL). The beam emittance and FEL performance are highly related to the transverse shape of the injector laser. When the injector laser has hot spots and non-uniformities that can carry over to the electron beam and degrade electron emittance and FEL performance, it requires long hours of manual adjustment by laser engineers and strenuous machine tuneup. The injector laser shaping project at LCLS aims to have precise control of the driver laser transverse profile in order to produce arbitrary electron beam profiles, which will enable us to study effects of laser shape on beam emittance and FEL performances. We use a digital micromirror device (DMD) to manipulate the drive laser profile. In this paper, we briefly discuss the implementations of laser shaping at LCLS. We demonstrate two applications of laser shaping. We present results of using laser shaping to control the X-ray laser output via an online optimizer. We also show the photocathode quantum efficiency measurements across cathode surface using the DMD. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB116 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB118 | High Power Sub-Femtosecond X-Ray Pulse Study for the LCLS | 2848 |
SUSPSIK017 | use link to see paper's listing under its alternate paper code | |
|
||
The desire to resolve sub-femtosecond electron dynamics has pushed FEL facilities to shorter pulse lengths. However, current short-pulse schemes provide low pulse energy and a gain-length limited lower bound on the pulse duration. The X-ray Laser-Enhanced Attosecond Pulses (XLEAP) project at SLAC is designed implement an Enhanced Self Amplified Spontaneous Emission (ESASE) scheme, which produces sub-fs current spikes by modulating and compressing the electron beam. We show through a series of Genesis simulations that the current spike is capable of producing sub-fs pulses with a peak power well above 100 GW. Space-charge induced beam chirp can decrease pulse lengths below 400 as, and multi-stage schemes can increase peak x-ray powers to around 1 TW. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB118 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |