Hard X-ray FEL Lasing Through BBA and Radiation Spectrum Analysis

Heung-Sik Kang

On behalf of PAL-XFEL commissioning team

Pohang Accelerator Laboratory

IPAC2017, COPENHAGEN, DENMARK, 2017 MAY 14-19

Contents

- Introduction to PAL-XFEL
- e-BBA
- Radiation spectrum analysis
- PAL-XFEL commissioning status
- Beamline demo experiment

PAL-XFEL 0.1 nm hard X-ray FEL using a 10 GeV normal conducting linac

Apr. 2011:PAL-XFEL project startedJun. 2012:Ground-breakingDec. 2014:Building completedJan. 2016:Installation completedApr. 2016:Commissioning startedJun. 2017:User-service will start

PAL-XFEL Parameters

Main parameters		Undulator Line	HX1	SX1
e ⁻ Energy	10 GeV	Wavelength [nm]	0.1 ~ 0.6	1 ~ 4.5
e ⁻ Bunch charge 20- Slice emittance 0.5	20-200 pC 0.5 mm mrad	Beam Energy [GeV]	4 ~ 10	3.15
Repetition rate Pulse duration	60 Hz 10 fs – 100 fs	Wavelength Tuning [nm]	0.6 ~ 0.1 (energy or gap)	4.5 ~ 3 (energy) 3 ~ 1 (gap)
Peak current SX line switching	3 kA DC (Phase-1) Kicker (Phase-2)	Undulator Type	Planar, out-vac.	Planar
		Undulator Period / Gap [mm]	26 / 8.3	35 / 8.3

Lattice Function

IPAC2017, COPENHAGEN, DENMARK, 2017 MAY 14-19

Klystron Gallery

IPAC2017, COPENHAGEN, DENMARK, 2017 MAY 14-19

Linac Tunnel

Undulator Hall

IPAC2017, COPENHAGEN, DENMARK, 2017 MAY 14-19

Undulator Design

- We adopted the European XFEL undulator design, which features a 5-m-long, planar, permanent magnet and an out-vacuum variable-gap undulator
- and modified its magnet design according to the PAL-XFEL undulator parameters

Symbol	Unit	Nominal value
E	GeV	10.000
g	mm	8.30
λ _u	mm	26.0
L _{und}	m	5.0
λ _r	nm	0.1
B_{eff}	Tesla	0.8124
K		1.9727
Optical phase error	degree	less than 5.0

IPAC2017, COPENHAGEN, DENMARK, 2017 MAY 14-19

Why we need e-BBA & K-tuning?

- **SASE FEL** is an interactive process between e-beam and photon beam through 100m long undulators.
- Dispersion-free orbits straight to within a few micrometres over the gain length is required to maximize the spatial overlap between the electron and photon beams.
 - e-beam based BBA (LCLS, fixed gap undulator)
 - **photon beam based BBA** (SACLA, variable-gap in-vacuum undulator)
- PAL-XFEL: variable gap out-vacuum undulator
 - e-BBA
 - Radiation spectrum analysis (K-tuning)
- Radiation spectrum analysis
 - -> accurate gap distances for *K* in each undulator segment
 - -> undulator field centre offsets,

, which is particularly critical for variable-gap undulators.

Electron beam-based BBA (1)

• BBA measurement algorithm

- Henrik Loos, LCLS FAC, June 8, 2009)

- P. Emma et al. Beam-based alignment for the LCLS FEL undulator. NIM A 429, 407-413 (1999).

- Model beam position (m_j) at BPMs as function of

initial launch at 1st BPM (x_i), quad offsets (Δq_i), BPM offsets (Δb_i)

- m =
$$[R_x R_q R_b][x' \Delta q' \Delta b']'$$

PAL-XFEL Cavity BPM: X-band BPM

Dipole Cavity

HX Cavity BPM Resolution

Radiation Spectrum Analysis: K-tuning

T. Tanaka *et al. Phys. Rev. ST* Accel. Beam **15**, 110701 (2012).

PAL-XFEL Commissioning

Apr. 2011:PAL-XFEL project startedJun. 2012:Ground-breakingDec. 2014:Building completedJan. 2016:Installation completedApr. 2016:Commissioning startedJun. 2017:User-service will start

14 Jún. 2016 First SASE lasing at 0.5 nm
 28 Oct. 2016 Lasing at 0.15 nm
 27 Nov. 2016 Saturation of 0.15 nm
 16 Mar. 2017 Saturation of 0.1 nm¹⁵

Stability of 0.104 nm FEL

16

Photon flux of Hard X-ray FEL (As of May 7, 2017)

Date				Apr. 5	Apr. 07	
wavelength, nm	0.097	0.104	0.25	0.444	0.444	
photon energy, keV	12.78	11.92	4.96	2.79	2.79	
FEL pulse energy, mJ	0.17	0.34	0.28	0.177	0.192	
Number of photon per FEL pulse	8.3E+10	1.8E+11	3.5E+11	4.0E+11	4.3E+11	17

PAL-XFEL Beamline

- Photon energy: 2.8~12.9 keV
- Beam lines: 3 hard 2 soft X-ray beamlines (~80 m)

Demo Experiment: Optical Laser Pump – XFEL Probe X-ray Diffraction Bismuth (111) thin film

Bi(111) thin film (50 nm) on GaSb(111)/Si(111) X-ray: 6 keV X-ray size: ~ 60 x 60 um² Laser: 800 nm, 100 fs Detector: MPCCD 0.5M

Summary

- The **e-BBA** of the undulator lines enabled us to obtain **dispersionfree orbits** straight to within a few micrometres to maximize the spatial overlap between the electron and photon beams.
- The radiation spectrum analysis facilitated identification of the undulator field centre offsets and accurate gap distances for *K* in each undulator segment, which is particularly critical for variable-gap undulators.
- Using this procedure, we successfully achieved saturation of both 0.1 nm and 1.5 nm FEL beams in a very reliable and robust manner and delivered the FEL beams to each beamline for commissioning.

Acknowledgement

- We would like to express our sincere thanks to K.J. Kim at ANL,
 P. Emma, Z. Huang, P. Krejcik, A. Young, S. Hoobler, Charlie Xu,
 T. Straumann, Y. Ding, F. Zhou, D. Ratner, T. Raubenheimer, J.
 Wu at SLAC, J. Pflueger at DESY, and H. Loos for their appreciable help.
- We would like to thank **Prof. S. L. Cho** of Ulsan University for providing Bi thin film samples.
- We are also grateful for the support of the Ministry of Science, ICT and Future Planning of Korea.

