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Abstract

In a free-electron laser (FEL), transverse momentum off-

sets (or "kicks") are introduced either inadvertently (through

wakefields or mis-steering of the electron beam) or as part

of dedicated schemes that require off-axis radiation prop-

agation [1]. Studying the influence of this effect on the

performance of machines such as LCLS-I/II is critical both

from a tolerance point of view and for its practical appli-

cations. A theoretical analysis of a high-gain FEL driven

by such a "kicked" beam will be presented, with a critical

evaluation of previous studies.

INTRODUCTION

In a typical X-ray FEL configuration, a transverse kick

(in other words, a discontinuity in the transverse slope of the

electrons) leads to an oscillation of the electron beam about

the undulator axis. Previous treatments of this effect in the

context of FEL physics have focused on the case of a bunched

electron beam, a hypothesis more relevant for the saturation

regime [2]. Thus, the arguments used in the derivation of the

basic analytical results are not quite applicable in the linear

regime, where the buildup of the radiation power takes place.

The object this paper is to highlight the results of a self-

consistent analysis based on the linearized, Maxwell-Vlasov

equations for an FEL driven by a "kicked" e-beam.

THEORY OUTLINE

We begin by assuming that an (initially on-axis) electron

beam receives a horizontal kick of magnitude p0 at the en-

trance of the undulator module (designated as z = 0). Using

the linearized Maxwell-Vlasov equations of the FEL, we

can provide a complete description of the interaction be-

tween the radiation and the electron beam up to the onset

of saturation [3]. Here, we summarize the most relevant

results of our recent study [4]. The beam has a Gaussian

profile in terms of transverse coordinates and energy and

a flattop current profile with a bunch length considerably

larger than the slippage length (so that a steady-state analysis

is appropriate). For the planar undulator under considera-

tion, the electric field of the linearly polarized radiation is

Erad = (1/2)Eν(x, z) exp (iνkr (z − ct))+c.c., where Eν(x, z)
is a complex amplitude (which depends on the transverse

position x = (x, y) and the longitudinal coordinate z) and

kr is the resonant radiation wave number (c.c. stands for

complex conjugate). Here, we focus on a specific frequency

ω, quantified by the scaled quantity ν = ω/ωr (ωr = ckr is

the resonant frequency).

In the latter stage of the linear regime, the amplitude

of the radiation can be approximated by Eν ∝ [A0(x̂, ŷ) +

A1(x̂, ŷ)eik̂βx ẑ+A−1(x̂, ŷ)e−ik̂βx ẑ]eiμ̂ẑ . Here, (x̂, ŷ) are some

scaled transverse coordinates (in a frame co-moving with

the oscillating e-beam), μ̂ is a complex growth rate, A0(x̂, ŷ)
and A±1(x̂, ŷ) are the mode profiles and ẑ = 2ρkuz (where

ρ is the FEL parameter [5] and ku = 2π/λu , with λu be-

ing the undulator period). Moreover, k̂βx = kβx/(2ρku) is

a scaled focusing parameter, where kβx = 1/βex and βex
is the horizontal beta function (assuming the focusing lat-

tice can be described by the smooth approximation). For

future reference, we note that the corresponding focusing

parameter for the y direction is k̂βy = kβy/(2ρku), with

kβy = 1/βey . Given the growth rate μ̂, the power gain

length is LG = L0

√
3/(2 | μ̂i |), where the index i stands for

the imaginary part and L0 = λu/(4π
√

3ρ). As far as the

important ρ parameter itself is concerned, it is given by

ρ =

(
K2

0
[JJ]2

16γ3
0
k2
uσxσy

Ip

IA

)1/3
, (1)

where Ip is the peak current of the beam, IA ≈ 17 kA is

the so-called Alfven current, γ0 is the average electron rela-

tivistic factor, σx,y are the electron beam sizes (see below

for more), K0 is the dimensionless undulator parameter and

[JJ] = J0(K2
0
/(4+ 2K2

0
)) − J1(K2

0
/(4+ 2K2

0
)) (where J0, J1

are Bessel functions). We should also point out the reso-

nance condition that relates the basic FEL quantities, namely

λr = λu(1+K2
0
/2)/(2γ2

0
), where λr = 2π/kr is the resonant

wavelength.

For a small kick angle p0, the growth rate can be ex-

pressed as μ̂ = μ̂(0) + μ̂(2), where μ̂(0) is the unperturbed

value and μ̂(2) is a second order contribution proportional

to p2
0
. The fundamental amplitude A0(x̂, ŷ) has both zeroth

and second order contributions, while the satellite ampli-

tudes A±1(x̂, ŷ) are first order quantities (proportional to

p0). The unperturbed quantities A
(0)
0
(x̂, ŷ) and μ̂(0) can be

determined using the standard variational techniques [6].

In particular, for a Gaussian trial solution of the form

A
(0)
0
(x̂, ŷ) = exp(−ax x̂2 − ay ŷ

2), the variational dispersion

relation is

F0(μ̂(0), ax, ay) = μ̂(0) + ηdxax + ηdyay + a
1/2
x a

1/2
y (2)

×
∫ 0

−∞
dξ̂ ξ̂ exp[i(μ̂(0) − ν̂)ξ̂ − σ̂2

δ ξ̂
2/2]D−1/2

0x
D
−1/2
0y
= 0 ,

where

D0x =
1

4
(1 + iηεx ξ̂)2 + (1 + iηεx ξ̂)ax + a2

xsin2(k̂βx ξ̂) ,

D0y =
1

4
(1 + iηεy ξ̂)2 + (1 + iηεy ξ̂)ay + a2

ysin2(k̂βy ξ̂) .
(3)
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The solution is completed by the relations ∂F0/∂ax = 0 and

∂F0/∂ay = 0, which are due to the fact that the stationary

growth rate satisfies ∂ μ̂(0)/∂ax = ∂ μ̂
(0)/∂ay = 0. These

three equations yield the fundamental growth rate μ̂(0) and

the mode parameters ax and ay as functions of the detuning

ν̂ = (ν−1)/(2ρ). The other scaled quantities that require ex-

plaining are as follows: given the rms energy spread σδ , the

rms beam sizes σx,y and the rms angular spreads σ′x,y (the

matching conditions being σ′x,y = σx,ykβx,βy), σ̂δ = σδ/ρ
is the scaled energy spread parameter, ηdx = (4kukr ρσ

2
x )−1

and ηdy = (4kukr ρσ
2
y )−1 are the diffraction coefficients

and ηεx = krσ
′
x

2/(2ρku) and ηεy = krσ
′
y

2/(2ρku) are the

emittance parameters.

The two satellite amplitudes A±1 can also be deter-

mined using a variational technique, albeit a version that

is suitable for driven (rather than homogeneous) equa-

tions. A suitable trial function for them is A±1(x̂, ŷ) =
λ± x̂ exp(−b± x̂2) exp(−c± ŷ2) and the corresponding varia-

tional function is

I± =
πλ2

±
8b±

√
b±
√

c±
[μ̂(0) ± k̂βx + 3ηdxb± + ηdyc±]

+

πλ2
±

8

∫ 0

−∞
dξ̂ ξ̂ exp[i(μ̂(0) ± k̂βx − ν̂)ξ̂ − σ̂2

δ ξ̂
2/2]

× N1xD
−3/2
1x

D
−1/2
1y

− iπε1λ±
ax

(b± + ax)3/2
1

(c± + ay)1/2

+

iπελ±
4

∫ 0

−∞
dξ̂ ξ̂2 exp[i(μ̂(0) − ν̂)ξ̂ − σ̂2

δ ξ̂
2/2]

× NxD
−3/2
x D

−1/2
y , (4)

where

Nx =ax exp(±i k̂βx ξ̂) sin(k̂βx ξ̂) ± i

2
(1 + iηεx ξ̂) ,

Dx =b±axsin2(k̂βx ξ̂) + 1

2
(1 + iηεx ξ̂)(b± + ax)

+

(1 + iηεx ξ̂)2
4

,

Dy =c±aysin2(k̂βy ξ̂) + 1

2
(1 + iηεy ξ̂)(c± + ay)

+

(1 + iηεy ξ̂)2
4

(5)

and

N1x = (1 + iηεx ξ̂) cos(k̂βx ξ̂) , (6)

D1x = b2
±sin2(k̂βx ξ̂) + b±(1 + iηεx ξ̂) + 1

4
(1 + iηεx ξ̂)2 ,

D1y = c2
±sin2(k̂βy ξ̂) + c±(1 + iηεy ξ̂) + 1

4
(1 + iηεy ξ̂)2 .

In the relations given above, the only new scaled parameters

are two quantities that are proportional to the kick angle

p0: ε1 = p0/(2ρkuσx) and ε = kr p0σ
′
x/(2ρku) (their ra-

tio is related to the horizontal emittance εx = σxσ
′
x since

ε/ε1 = krσxσ
′
x). For this case, the variational relations are

∂I±/∂λ± = ∂I±/∂b± = ∂I±/∂c± = 0. Solving these three

equations yields the satellite mode parameters (λ±, b± and

c±). In view of the simple quadratic dependence of I± on λ±
and ε , ε1, it can be readily seen that the resulting value for

λ± is a linear combination of ε and ε1. Thus, as expected,

λ± and A±1 are indeed first order quantities (recall that ε and

ε1 are both proportional to p0).

Having determined μ̂(0) and the parameters for A
(0)
0

and

A±1, we can find the second order corrections to μ̂. The final

analytical result is:

[1 + ia
1/2
x a

1/2
y

∫ 0

−∞
dξ̂ ξ̂2eΨD

−1/2
0x

D
−1/2
0y

]μ̂(2) =

= −iε1a
3/2
x a

1/2
y × [ λ+

(ax + b+)3/2(ay + c+)1/2

+

λ−
(ax + b−)3/2(ay + c−)1/2

] (7)

+

ε2

4
a

1/2
x a

1/2
y

∫ 0

−∞
dξ̂ ξ̂3eΨN0xD

−3/2
0x

D
−1/2
0y

+

iε2
1

4ηdx
a

1/2
x a

1/2
y

∫ 0

−∞
dξ̂ ξ̂2eΨD

−1/2
0x

D
−1/2
0y

+

i

4
ελ+

√
ax
√

ay

∫ 0

−∞
dξ̂ ξ̂2eΨ+ (ÑxD

−3/2
x D

−1/2
y )+

+

i

4
ελ−

√
ax
√

ay

∫ 0

−∞
dξ̂ ξ̂2eΨ−(ÑxD

−3/2
x D

−1/2
y )− ,

where Ψ = i(μ̂(0) − ν̂)ξ̂ − σ̂2
δ
ξ̂2/2, Ψ± = Ψ ± i k̂βx ξ̂, N0x =

ax + (1 + iηεx ξ̂)/2 and

Ñx = ax sin(k̂βx ξ̂)+ 1

2
[sin(k̂βx ξ̂)∓ i cos(k̂βx ξ̂)](1+ iηεx ξ̂) .

This results completes our summary of the perturbation

solution for the growth rate. Using these algorithms, we can

calculate the full growth rate μ̂ as a function of the detuning

ν̂ for different kick angles.

NUMERICAL ILLUSTRATION

This section provides a brief numerical illustration of

the theoretical technique outlined above. To begin with,

we consider a set of LCLS-like FEL parameters involving

the generation of 8.2 keV photons (0.15 nm radiation wave-

length) with a 14.3 GeV e-beam and a 3 cm period undulator

(with K0 = 3.7). An average beta value of βex = βey = 30

m corresponds to a beam size σx = σy = 23 μm (for a trans-

verse normalized emittance γ0εx = γ0εy = 0.5 mm-mrad).

The energy spread is fixed at σδ = 10−4, while the e-beam

peak current is at 3 kA, which yields an FEL parameter

ρ ≈ 5 × 10−4. In Fig. 1, we show the negative imaginary

parts of the unperturbed growth rate μ̂(0) and its corrected

counterpart μ̂ = μ̂(0) + μ̂(2) for a scaled detuning ν̂ = −0.5

and a kick angle p0 = 1.54μrad. These constant quantities

are plotted against z (scaled by the horizontal beta βex) in

order to facilitate a comparison with the local, scaled growth

rate −μ̂zi . The latter is simply the logarithmic power growth
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rate P−1
rad

dPrad/dz (where Prad ∝ |Eν |2 is the radiation power)

scaled by 4ρku . The necessary data for the radiation power

are obtained from a solution of the linearized initial value

problem (IVP) via an orthogonal expansion method [4]. Af-

ter an initial transient stage, we observe a periodic evolution

of the local growth rate with respect to z. Its average value

agrees rather well with the figure obtained from the periodic

analysis described in the theory section. This agreement

encourages us to use the perturbed growth rate as a figure of

merit for the FEL.

As a final task, we wish to compare the results of the

periodic technique with previous analytical expressions for

the kicked beam case. Of the latter, the main example is the

Tanaka formula introduced in [2]. It states that a single kick

p0 increases the power gain length from an initial value of

LG0 to

LG =
LG0

1 − (p0/θc)2
, (8)

where θc =
√
λr/LG0 is the critical angle. An equivalent

statement would be that the ratio of the final (power) growth

rate vs the initial growth rate is equal to 1 − (p0/θc)2. In

Fig. 2, we plot this growth rate ratio ( fopt = (μ̂(0)i
+ μ̂

(2)
i
)/μ̂(0)

i
)

vs the ε1 parameter (which is proportional to the kick angle)

using both the formula and the periodic analysis. As calcu-

lated from the latter, the reduction of the growth rate due

to the kick is stronger than that which is predicted by the

formula. This observation can be conveniently quantified by

rewriting the formula as

LG =
LG0

1 − am(p0/θc)2
, (9)

where am can be determined from the function μ̂ = μ̂(ν̂).
For our parameters, am ≈ 2. This deviation should not be

unexpected, given the different context of the two methods

under consideration.

CONCLUSIONS

In this paper, we have outlined the results of a theoreti-

cal analysis of a high-gain FEL driven by a "kicked" beam.

Working within the framework of a Maxwell-Vlasov formal-

ism, we developed a periodic technique which allows us to

define and determine an average FEL growth rate, suitable

for describing the system after averaging over the e-beam

centroid oscillations. After verifying its results through a

comparison with other methods, the periodic analysis is

contrasted with Tanaka’s gain length formula, revealing a

somewhat stronger quadratic reduction of the growth rate

with respect to the kick.
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