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Abstract

Using a transverse gradient undulator (TGU) is one of

the methods proposed in order to enable the utilization of

electron beams with large energy spread (such as those from

plasma-based accelerators) in a free-electron laser (FEL).

Most of the analytical treatments of this scheme assume a lin-

ear variation of the undulator field with one of the transverse

coordinates. While this assumption leads to a simplified

and more tractable model, including higher-order multipoles

allows us to offer a more complete and rigorous description

of the system. In this paper, we investigate the magnetic field

components of a TGU using both theory and simulation and

explore the impact of higher-order multipoles on the FEL

performance.

INTRODUCTION

Due to their high brightness (a combination of high peak

current and low transverse emittance), the electron beams

from modern plasma-based accelerators are considered at-

tractive options for driving compact X-ray free-electron

lasers. However, one of the main inhibiting factors is the rel-

atively large energy spread that typically characterizes such

beams. One possible solution involves the use of a transverse

gradient undulator (TGU), in which the undulator poles are

canted in such a way as to induce a dependence of the verti-

cal field amplitude with the horizontal coordinate [1]. Since

this dependence is assumed to be predominantly linear, the

resulting transverse field gradient can be used to mitigate the

effect of the energy spread on the lasing, provided a suitable

horizontal dispersion is added to the beam. A number of

recent studies have explored the potential of such a high-

gain, TGU-based FEL using both self-consistent theory and

simulation [2,3]. However, some authors [4] have expressed

scepticism about some of the assumptions used in these stud-

ies, in particular those having to do with the linear character

of the undulator field. Motivated by these concerns, we seek

to extend the standard treatment of the subject by explicitly

considering the impact of nonlinear field components on the

operation of a TGU-based FEL.

FIELD ANALYSIS

The main objective of this section is to present a multipole

analysis of the magnetic field of a transverse gradient undu-

lator (TGU) from an analytical point of view. The magnetic

field Bu satisfies the vacuum Maxwell equations ∇×Bu = 0

and ∇ · Bu = 0. Thus, it can be derived from a scalar mag-

netic potential Φm via Bu = ∇Φm, where the potential itself

satisfies the Laplace equation (∇2
Φm = 0). Assuming a

simple harmonic z-dependence for the scalar potential (i.e.

Φm = Φ(x, y) sin(kuz), where ku = 2π/λu and λu is the un-

dulator period), one easily finds that the potential amplitude

Φ satisfies

∇2
⊥Φ − k

2
uΦ =

(

∂2

∂x2
+

∂2

∂y2

)

Φ − k
2
uΦ = 0 . (1)

The field components are given by

Bux =
∂Φm

∂x
= Bx(x, y) sin(kuz) ,

Buy =
∂Φm

∂y
= By(x, y) sin(kuz) ,

Buz =
∂Φm

∂z
= Bz(x, y) cos(kuz) , (2)

where Bx = ∂Φ/∂x, By = ∂Φ/∂y and Bz = kuΦ. Note that

the three amplitudes Bi (where i = x, y, z) also satisfy the

same equation as the potential, i.e. ∇2
⊥Bi − k2

uBi = 0. Our

goal is to determine the field’s full transverse dependence

given the vertical field By at the median plane y = 0 (that

is, By(x, 0)). Thus, we assume that the latter is known and

given in a Taylor series form by

By(x, 0) =

∞
∑

i=0

Fi x
i
= F0 + F1x + F2x

2
+ ... , (3)

where the Fi coefficients will be determined in due course.

Moreover, we seek a separable solution of the formΦ(x, y) =

X(x)Y (y). This leads to the relation X ′′/X + Y ′′/Y = k2
u

(here, the double prime denotes the second derivatives

d2/dx2 and d2/dy2). This, in turn, implies that X ′′
= k2

xX

and Y ′′
= k2

yY , where kx and ky are constants that satisfy

k2
x + k2

y = k2
u . The resulting solution is

Φ(x, y) = Φ0[cosh(kx x) + cx sinh(kx x)]

× [cy cosh(ky y) + sinh(ky y)] , (4)

where cx,y and Φ0 are constants. The corresponding vertical

field is

By(x, y) =
∂Φ

∂y
= B0[cosh(kx x) + αx

sinh(kx x)

kx
]

× [cosh(ky y) + αy
sinh(ky y)

ky
] , (5)

where B0 = kyΦ0 and αi = ciki (i = x, y). This particular

solution is defined in terms of two scaled gradients (αx,y)

and two scaled "curvature" quantities (kx,y). At this point,

we make use of the fact that By(x,−y) = By(x, y), which

yields αy = 0. The field then reduces to

By(x, y) = B0[cosh(kx x) + αx
sinh(kx x)

kx
] cosh(ky y) . (6)
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The form previously used in [3] corresponds to setting kx →

0. The next step is to compare the median-plane field

By(x, 0) = B0[1 + αx x +
(kx x)2

2
+ ...] (7)

to the original expansion, i.e. By(x, 0) = F0 + F1x + F2x2
+

..., which yields B0 = F0, αx = F1/B0 = F1/F0, k2
x =

2F2/B0 = 2F2/F0 and k2
y = k2

u − k2
x = k2

u − 2F2/F0. To

complete the solution, we outline a procedure for calculating

the original expansion coefficients Fi . When the undulator

pole faces are parallel, the field has no x-dependence and

the maximum, on-axis value of the vertical field (B0) can be

related to the full gap g0 through some formula of the form

B0 = H(g0) = c0 exp(P(g0)), where c0 is a constant and

P(g0) = −a1

g0

λu
+ a2

(

g0

λu

)2

, (8)

where a1, a2 are positive constants. For hybrid undulators,

the above relation (known as Halbach’s formula) is an empiri-

cal result which is valid for g0 < λu (c0 = 3.33 T, a1 = 5.47

and a2 = 1.80 if the material used is samarium-cobalt -

SmCo). For pure permanent magnet devices, a variation of

this general formula (with a1 = π and a2 = 0) can be derived

analytically [5, 6]. Generalizing a previous calculation for

the TGU gradient, we propose to calculate the median-plane

field through the relation By(x, 0) ≈ H(g0 + 2ϕx), where ϕ

is the (small) TGU angle. Comparing this approximation

with Eq. (3), we obtain the relation

Fn =
H(n)(g0)

n!
(2ϕ)

n

, (9)

where H(n)(g0) = dnH(g0)/dgn
0
. After some calculation of

the derivatives involved, we find the first few coefficients

(note that the double prime now denotes differentiation with

respect to g0):

F0 = B0 = H(g0) ,

F1 = 2ϕH
′
0 = 2ϕB0P

′
0 ,

F2 =
1

2
H

′′
0 (2ϕ)

2
=

1

2F0

[1 +
P′′

0

P′
0

2
]F2

1 . (10)

In view of Eq. (8), we have

ζ =
P′′

0

P′
0

2
=

2a2

(a1 − 2a2(g0/λu))2
. (11)

For g0 = λu , ζ = 2a2/(a1 − 2a2)
2 ≈ 1 but typically g0 is

considerably smaller than λu and ζ ≪ 1 (for a pure perma-

nent magnet device, ζ is identically equal to zero). On the

other hand, we expression for F1 yields

F1 = 2ϕF0P
′
0 → αx =

F1

F0

= −
2ϕ

λu
(a1 − 2a2

g0

λu
) , (12)

which is the expression given in [2]. In terms of the gradient,

the coefficient for the quadratic term is rewritten as

F2 =
B0

2
(1 + ζ)α2

x ≈
B0

2
α2
x → k

2
x =

2F2

F0

≈ α2
x . (13)

For kx ≈ αx , we have By(x, y) ≈ B0 exp(αx x) cosh(ky y),

which is a rather useful analytical approximation.

FEL CONSIDERATIONS

To estimate the effect of the various field multipoles (i.e.

contributions ∝ xn) on the operation of the FEL, we begin

with the basic resonance condition λr = λu(1+K2/2)/(2γ2),

which relates the radiation wavelength λr to the fundamen-

tal e-beam and undulator properties. For a horizontally-

dispersed beam, the relativistic factor is given by γ =

γ0(1 + x/η), where γ0 is the central value and η is the dis-

persion. Considering only the field at the median plane

(y = 0), the undulator parameter is expressed by K →

K(x) = eBy(x, 0)/(mcku). After some rearrangement, we

have

λr = λr0

1 + (K2(x) − K2
0
)/(2 + K2

0
)

(1 + x/η)2
, (14)

where λr0 = λu(1 + K2
0
/2)/(2γ2

0
) and K0 = K(0) =

eB0/(mcku). Thus, the deviation of the radiation wavelength

from its on-axis value λr0 is given by

∆λr

λr0

=

λr − λr0

λr0

(15)

≈
[K2

0
/(2 + K2

0
)](K2(x)/K2

0
− 1) − 2(x/η) − (x/η)2

(1 + x/η)2
.

The above equation is valid for any field dependence K(x).

For a specific profile of the form K = K0 exp(αx x), we have

K2/K2
0
− 1 = exp(2αx x) − 1 = 2αx x + 2α2

x x2
+ ... Thus,

expanding the RHS up to second order in x, we have the

expression

∆λr

λr0

≈2(
K2

0
αx

2 + K2
0

−
1

η
)x (16)

+ [
2K2

0
α2
x

2 + K2
0

+

3

η2
− 4

K2
0
αx

2 + K2
0

1

η
]x2 .

Assuming that the TGU resonance condition

αxK2
0

2 + K2
0

=

1

η
(17)

is valid and using the fact that x/η ∼ σδ ≪ 1, (where σδ
is the rms energy spread of the e-beam), we find that the

scaled "detuning" quantity due to the leading (second order)

field multipole is

∆λr

λr0

/ρ ≈
σδ

ρ
(1 +

4

K2
0

)σδ , (18)

where ρ is the FEL parameter. We point out that the RHS of

the above result does not contain the dispersion η. For larger

TGU angles, the gradient increases and so do the strengths of

the multipole terms but the dispersion for resonant operation

decreases and the reduced beam size balances the effect.

For typical TGU parameters (σδ/ρ ∼ 1, K0 ∼ 1), we have

(∆λr/λr )/ρ ∼ σδ ≪ 1, so the multipoles should not affect

the FEL appreciably.
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RADIA SIMULATION
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Figure 1: Longitudinal variation of the on-axis, undulator

magnetic field components (RADIA simulation). The only

non-zero component is the vertical field (brown line).
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Figure 2: x-dependence of the median-plane (y = 0) mag-

netic field components (RADIA simulation). The z-location

corresponds to a crest of the y-field. Once again, the brown

line corresponds to the vertical field.

We have benchmarked our analytical expressions with the

aid of the RADIA magnetostatic simulation package [7]. In

particular, we considered a standard, pure permanent mag-

net undulator configuration with period λu = 14 mm, four

blocks per period and a remanent field of about 1 T (the

material being neodymium-iron-boron - NdFeB). In Fig. 1,

we plot the various on-axis components of the magnetic field

along the undulator (for a total length of 20 periods). On

the other hand, Fig. 2 shows the x-dependence of the field

components at the median plane (y = 0). In this case, the

z-location is chosen so that the vertical field is maximum,

in the middle of the undulator. A gap g0 of 6 mm yields

a field B0 = 0.46 T, in line with analytical estimates [6].

For an angle ϕ of 12 degrees, the theoretical value for the

gradient is αx = −2πϕ/λu = −94 m−1, in close agreement

with the simulation value of −93.2 m−1 (the latter is derived

from a polynomial fit of the data shown in Fig. 2), A similar

agreement is observed for the second-order coefficients (the

theoretical value being α2
x/2 ≈ 4417 m−2 while the simu-

lation value is 4051 m−2. Even for this relatively strong

gradient, Eq. (18) yields (∆λr/λr0)/ρ ∼ 0.12, for a (rather

pessimistic) case with σδ/ρ = 1 and σδ = 10−2. Even this

value is mostly due to the low undulator parameter K0 = 0.61

(the resonant dispersion is -68 mm). In general, the scaled

detuning due to the nonlinear field components appears to

be, at worst, an order of magnitude larger than the energy

spread σδ , which is typically not more than a few percent.

Thus, (∆λr/λr )/ρ is usually much smaller than unity.

CONCLUSIONS

We have presented an analysis of the magnetic field com-

ponents of a transverse gradient undulator (TGU), including

higher-order multipoles. In particular, we have generalized

previous analytical results in order to include a nonlinear

dependence of the vertical field with respect to the horizon-

tal coordinate x. Moreover, we have explored the effect of

these added multipoles on the operation of a TGU-based

FEL. While this investigation is by no means exhaustive,

we believe that the presence of nonlinear multipoles does

not introduce any insurmountable obstacles, as far as the

utilization of the TGU in a compact FEL configuration is

concerned.
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