WEPOW —  Poster Session   (11-May-16   16:00—18:00)
Paper Title Page
WEPOW001 Sirius Status Report 2811
 
  • A.R.D. Rodrigues, F.C. Arroyo, O.R. Bagnato, J.F. Citadini, R.H.A. Farias, J.G.R.S. Franco, L. Liupresenter, S.R. Marques, R.T. Neuenschwander, C. Rodrigues, F. Rodrigues, R.M. Seraphim, O.H.V. Silva
    LNLS, Campinas, Brazil
 
  Sirius is a Synchrotron Light Source Facility based on a 4th generation low emittance storage ring that is presently under construction in Campinas, Brazil. During the last year, accelerator activities concentrated on R&D of the various subsystem components. However, the number of components under production or already delivered is also increasing according to planning. The building construction started in the beginning of 2015 and machine commissioning is expected to start mid 2018. In this paper we report on the present status of the project with emphasis on the last year activities.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW003 Design Considerations of a 7BA-6BA Lattice for the Future Upgrade of SOLEIL 2815
 
  • R. Nagaoka, P. Brunelle, H.C. Chaopresenter, F.J. Cullinan, X.N. Gavaldà, A. Loulergue, A. Nadji, L.S. Nadolski, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Previous studies indicated that adoption of a combination of 7 and 6BA cells in the existing SOLEIL ring enables reaching the target range of the horizontal emittance below 200 pm·rad as expected, in contrast to fewer dipole solutions such as a combination of 5 and 4BA studied earlier (IPAC 2014). However, the previous 7BA-6BA lattice resulted in having unacceptably strong gradients in quadrupoles and dipoles leading to high natural chromaticities. Several schemes that would allow for an improvement are explored, such as shortening the insertion device straight sections by one or two meters to create more space for the magnetic structure, lowering the dipole fields and the use of anti-bends as proposed by A. Streun. The effectiveness of each scheme is evaluated and the best combined use of them for SOLEIL is investigated. Ways to fulfil the constraints of the existing dipole beam lines are studied by introducing longitudinal gradient bends and/or multipole wigglers. The nonlinear optimisation to maximise the on and off-momentum apertures is made by using genetic algorithm-based numerical codes. A comparison of their performance and the obtained results are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW005 Updates on Lattice Modeling and Tuning for the ESRF-EBS Lattice. 2818
 
  • S.M. Liuzzo, N. Carmignani, J. Chavanne, L. Farvacque, G. Le Bec, B. Nash, P. Raimondi, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  The ESRF-EBS lattice model is updated to include the effect of magnetic lengths in dipoles, quadrupoles, sextupoles and combined function magnets. The effect of this modification and the updates to the injection cell are considered with particular focus on injection efficiency and Touschek lifetime. The solutions to introduce new sources of radiation suitable for the existing bending magnet radiation beamlines are also presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW006 Hybrid Multi Bend Achromat at 3 GeV for Future 4th Generation Light Sources 2822
 
  • S.M. Liuzzo, D. Einfeld, L. Farvacque, P. Raimondi
    ESRF, Grenoble, France
 
  Starting from the Hybrid Multi Bend Achromat (HMBA) lattice designed for the 6GeV ESRF-EBS we rescale the lattice energy to 3GeV and optimize the lattice parameters to achieve dynamic apertures sufficient for injection and lifetimes of more than 7h without errors. The rescaling results to an emittance of roughly 140pmrad. Further optimizations of bending magnets longitudinal gradient, optics and sextupole fields show the possibility to further decrease emittance and increase the DA and lifetime. A comparison with other lattice designs is also presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW007 Status and Prospects of the BESSY II Injector System 2826
 
  • T. Atkinson, W. Anders, P. Goslawski, A. Jankowiak, F. Kramer, P. Kuske, D. Malyutin, A.N. Matveenko, A. Neumann, M. Ries, M. Ruprecht, A. Schälicke, T. Schneegans, D. Schüler, P.I. Volz, G. Wüstefeld
    HZB, Berlin, Germany
  • H.G. Glass
    BESSY GmbH, Berlin, Germany
 
  The BESSY II injector system consists of a 50 MeV Linac, installed in preparation for TopUp operation, and a 10 Hz fast-ramping booster synchrotron. The system provides injection efficiencies into the BESSY II storage ring well above 90 % . This contribution reports on the present status, measurements of energy acceptance and other essential beam parameters as well as studies on coupled-bunch-by-bunch instability. Requirements for BESSY-VSR and possible upgrade scenarios are discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW008 Specific Operation Modes at the Metrology Light Source 2829
 
  • J. Feikes, P. Goslawski, J. Li, M. Ries, M. Ruprecht, G. Wüstefeld
    HZB, Berlin, Germany
  • A. Hoehl
    PTB, Berlin, Germany
 
  The high flexibility of the Metrology Light Source (MLS) allows application of various nonstandard user modes adapted to the specific needs of their users. We report on some of them including a mode for division of the revolution frequency for the user signal and a mode with an adjustable photon pulse delay on the few ps scale.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW009 The Bessy Vsr Project for Short X-Ray Pulse Production 2833
 
  • A. Jankowiak, W. Anders, T. Atkinson, H. Ehmler, A. Föhlisch, P. Goslawski, K. Holldack, J. Knobloch, P. Kuske, D. Malyutin, A.N. Matveenko, R. Müller, A. Neumann, K. Ott, M. Ries, M. Ruprecht, A. Schälicke, A.V. Vélez, G. Wüstefeld
    HZB, Berlin, Germany
  • A. Burrill
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the German Bundesministerium für Bildung und Forschung, Land Berlin and grants of the Helmholtz Association
HZB has started the innovative project, BESSY VSR, to upgrade the 1.7 GeV synchrotron radiation source BESSY II. Its goal is to provide both 1.7 ps and 15 ps long, intense X-ray pulses simultaneously at all beam lines. These pulses are generated by enhanced longitudinal bunch focusing using superconducting 5-cell cavities operating at 1.5 GHz and 1.75 GHz. The resulting beating of the voltages creates alternating long and short buckets that can be custom filled. As a first major step, prototype superconducting cavities, initially only cooled to 4.4 K and thus operating at reduced voltage, will be installed into the BESSY II storage ring. Physical and technical aspects of this proposal where recently studied* and the results and project status are presented.
* A. Jankowiak, J. Knobloch for the BESSY VSR team, Technical Design Study BESSY VSR, doi:10.5442/R0001, Helmholtz-Zentrum Berlin (Germany), June 2015.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW010 Beam Lifetime Optimization by Adjusting the Sextupoles at the MLS and BESSY 2837
 
  • J. Li, J. Feikes, P. Goslawski, M. Ries, M. Ruprecht, T. Tydecks
    HZB, Berlin, Germany
 
  The Metrology Light Source (MLS) is a dedicated elec-tron storage ring for metrology applications with three families of sextupoles. The existing setting of the three independently powered sextupole families respective to lifetime were roughly determined by scanning their strengths against each other. As a flexible machine the sextupole families of the MLS can be regrouped into new families, which increase the complexity of the scan pro-cedure. Consequently the former strategy would be too time-consuming for refined global scan and it has to be complemented with physical constraints. Therefore a scheme has been developed to keep the chromaticity in a reasonable range during the scan and to reduce the degree of freedom, which is even more important at BESSY II with increasing number of independent sextupole cir-cuits. This paper presents the principle of sextupole scan and the experimental results at the MLS and preliminary test at BESSY II.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW011 BESSY II Supports an Extensive Suite of Timing Experiments 2840
 
  • R. Müller, T. Birke, F. Falkenstern, K. Holldack, P. Kuske, A. Schälicke, D. Schüler
    HZB, Berlin, Germany
  • H.G. Glass, R. Ovsyannikov
    BESSY GmbH, Berlin, Germany
 
  The synchrotron light source facility BESSY II has put top-up and a fast orbit feedback (FOFB) into operation in 2013. Both operational improvements have matured and turned out to be especially beneficial for the advanced timing opportunities supported at BESSY. In combination with very tight injection efficiency requirements a thorough understanding of top-up injections under all operational conditions has been developed. Consequently arbitrary bunch currents can be dialed in and maintained on demand. In standard mode, a very pure camshaft bunch is available both in general for laser pump/X-ray probe and for pseudo single bunch experiments at the MHz chopper beamline. 3 constant high current bunches support the FEMTOSPEX slicing facility. An additional bunch can be resonantly excited and pulse picked via custom orbit bumps at 3 different undulator beamlines (PPRE). Due to the FOFB the classical timing modes "single bunch" and "low alpha" feature an attractive pointing stability.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW012 Hardware Upgrades Improve the Reliability at BESSY II 2844
 
  • A. Schälicke, W. Anders, J. Borninkhof, V. Dürr, P. Goslawski, A. Hellwig, A. Heugel, H.-G. Hoberg, H. Hoffmann, A. Jankowiak, J. Kolbe, P. Kuske, G. Mielczarek, R. Müllerpresenter, D. Pflückhahn, M. Ries, S. Rotterdam, M. Ruprecht, B. Schriefer, D. Simmering, H. Stein
    HZB, Berlin, Germany
 
  The synchrotron light source BESSY II is now in its second decade of operation. Already in 2013 both top-up and fast orbit feedback have been introduced into user operation. Currently, the facility is undergoing significant hardware upgrades in order to fulfill the increasing demands of its user community in terms of reliability, stability and flexibility. These include replacement of the DORIS cavities with EU HOM damped cavities, the upgrade of the RF transmitters to solid state amplifiers, implementation of the shifted waist optics for the new in-vacuum undulator, and refurbishment of the superconducting multi-pole wiggler. In this contribution status of BESSY II operation and the upgrade projects is reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW013 Coherent Harmonic Generation in the Presence of Synchronized RF Phase Modulation at DELTA 2847
 
  • M.A. Jebramcik, F.H. Bahnsen, M. Bolsinger, S. Hilbrich, M. Höner, S. Khan, C. Mai, A. Meyer auf der Heide, R. Molo, G. Shayeganrad, P. Ungelenk
    DELTA, Dortmund, Germany
 
  Funding: Work supported by the BMBF (05K13PEC), DFG (INST 212/236-1) and the Stiftung Mercator (Pr-2014-0047).
At the 1.5-GeV synchrotron light source DELTA operated by the TU Dortmund University, ultrashort coherent pulses in the VUV and THz regime are generated via coherent harmonic generation (CHG). The intensity of the light depends strongly on the quality of the laser-electron interaction and therefore on the energy spread and density of the electron bunches. In 2014, a significant increase of the CHG intensity was observed by phase-modulating the RF cavity voltage, which is routinely used to prolong the beam lifetime. RF phase modulation can generate multiple stable regimes (islands) in longitudinal phase space when run near an integer multiple of the synchrotron frequency resulting in a modulation of the electron density and energy spread. A numerical simulation supporting the experimental observations is presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW014 Spectral Studies of Ultrashort and Coherent Radiation Pulses at the DELTA Storage Ring 2851
 
  • S. Khan, F.H. Bahnsen, M. Bolsinger, F. Götz, S. Hilbrich, M.A. Jebramcik, N.M. Lockmann, C. Mai, A. Meyer auf der Heide, R. Niemczyk, G. Shayeganrad, P. Ungelenk, D. Zimmermann
    DELTA, Dortmund, Germany
 
  Funding: Work supported by the BMBF (05K13PEC, 05K13PE3), the DFG (INST 212/236-1 FUGG), the Stiftung Mercator (Pr-2014-0047) and the state of NRW.
At the 1.5-GeV synchrotron light source DELTA operated by the TU Dortmund University, ultrashort and coherent radiation pulses in the VUV and THz regime are routinely generated by the interaction of electron bunches with 45-fs laser pulses. A laser-induced modulation of the electron energy is converted into a density modulation (microbunching) by a magnetic chicane, giving rise to coherent emission at harmonics of the initial laser wavelength (coherent harmonic generation, CHG). As a first step towards active control of the shape and spectrum of CHG pulses, spectral studies were performed under variation of the chicane strength and the laser properties. The spectral phase of the laser pulses was controlled by tuning the compressor of the laser amplifier and was monitored using FROG (frequency-resolved optical gating). In this paper, monochromator scans as well as single-shot spectrograms of the CHG radiation are presented and compared to simulations of the laser-electron interaction and microbunching process. In addition, other results from the short-pulse facility as well as a future upgrade employing the echo-enabled harmonic generation (EEHG) scheme will be outlined.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW015 Influence of Filling Pattern Structure on Synchrotron Radiation Spectrum at ANKA 2855
SUPSS010   use link to see paper's listing under its alternate paper code  
 
  • J.L. Steinmann, E. Blomley, M. Brosi, E. Bründermann, C.M. Caselle, N. Hiller, B. Kehrer, A.-S. Müller, M. Schedler, M. Schuh, M. Schwarz, P. Schönfeldt, M. Siegel
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the Helmholtz International School for Teratronics (HIRST)
We present the effects of the filling pattern structure in multi-bunch mode on the beam spectrum. This effects can be seen by all detectors whose resolution is better than the RF frequency, ranging from stripline and Schottky measurements to high resolution synchrotron radiation measurements. Our heterodyne measurements of the emitted coherent synchrotron radiation at 270 GHz reveal discrete frequency harmonics around the 100 000th revolution harmonic of ANKA, the synchrotron radiation facility in Karlsruhe, Germany. Significant effects of bunch spacing, gaps between bunch trains and variations in individual bunch currents on the emitted CSR spectrum are described by theory and supported by observations.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW016 Designing an Ultra Low Emittance Lattices for Iranian Light Source Facility Storage Ring 2858
 
  • E. Ahmadi, M. Jafarzadehpresenter, J. Rahighi
    ILSF, Tehran, Iran
  • H. Ghasem
    IPM, Tehran, Iran
  • S.M. Jazayeri
    IUST, Narmac, Tehran, Iran
 
  Electron storage rings are extensively used for high luminosity colliders, damping rings in high-energy physics and synchrotron light sources. To further increase the luminosity at the colliders or brightness of a synchrotron light sources, the beam emittance is being continually pushed downward. In this paper, we investigate the lattice design for the storage ring of Iranian Light Source Facility (ILSF) with an ultra-low emittance, intermediate energy of 3 GeV and circumference of 528 m. We present the design results for a five-band achromat lattice with the natural emittance of 276 pm-rad. The base line is based on 20 straight sections with the length of 7 m.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW017 Recent Progress on the Development of Iranian Light Source Facility (ILSF) Project 2861
 
  • J. Rahighi, F.A. Ahmad Mehrabi, E. Ahmadi, S. Ahmadian, M. Akbari, S. Amiri, J. Dehghani, R. Eghbali, S. Fatehi, H. Ghasem, A. Gholampour, M. Jafarzadehpresenter, P. Khodadoost, M. Moradi, M. Rahimi, M. Razazian, A. Sadeghipanah, F. Saeidi, E. Salimi, Kh.S. Sarhadi, O. Seify, M.Sh. Shafiee, D. Shirangi, E.H. Yousefi
    ILSF, Tehran, Iran
 
  The Iranian Light Source Facility Project (ILSF) is a 3rd generation light source with energy of 3 GeV, a full energy injector and a 150 MeV linac as pre-injector. The stored beam current in top up mode is 400 mA, the beam lifetime is about 7 h, and the average pressure of vacuum chamber is approximately 1.33 × 10-7 Pa (1 nTorr). The ILSF storage ring has been designed to be competitive in the future operation years. Some prototype accelerator components such as high power solid state radio frequency amplifiers, LLRF system, thermionic RF gun, storage ring H-type dipole and quadruple magnets, Hall probe system for magnetic measurement and highly stable magnet power supplies have been constructed in ILSF R&D laboratory.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW018 Elettra Status and Upgrades 2864
 
  • E. Karantzoulis, A. Carniel, S. Krecic, C. P. Pasottipresenter
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The operational status of the Italian 2.4/2.0 GeV third generation light source Elettra is presented together with the possible future upgrades especially concerning the next ultra low emittance light source Elettra2.0.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW019 SPring-8 Upgrade Project 2867
 
  • H. Tanaka, T. Ishikawa
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Goto, S. Takano, T. Watanabepresenter, M. Yabashi
    JASRI/SPring-8, Hyogo, Japan
 
  Plans are underway for the upgrade of the SPring-8 facility, targeting completion in the early 2020's. Sustainability is a key guiding principle for the fourth-generation X-ray source - a beam emittance of around 100 pm.rad is pursued simultaneously with substantial energy-saving. The three key features of the design are (i) to replace the main dipole electric magnets with permanent magnets, (ii) to reduce the electron beam energy from 8 to 6 GeV, and (iii) to use the SACLA linac as an injector. Lowering the beam energy leads to reduction of (a) beam emittance, (b) magnetic fields, (c) the lengths of ID straight sections to maintain larger spaces for the magnets, and (d) the RF power consumption. Timeshare use of the SACLA linac enables beam injection to the upgraded ring with a low-emittance and short-pulsed beam as well as a reduction of injector power consumption by stopping the present injector consisting of a 1-GeV linac and a booster synchrotron. The outline of the upgrade plan will be reported with the current status of R&D started in 2015.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW020 Present Status of KEK Photon Factory and Future Project 2871
 
  • T. Honda, M. Adachi, S. Asaoka, K. Haga, K. Harada, Y. Honda, X.J. Jin, T. Kageyama, R. Kato, Y. Kobayashi, K. Marutsuka, T. Miyajima, H. Miyauchi, S. Nagahashi, N. Nakamura, K.N. Nigorikawa, T. Nogami, T. Obina, M. Ono, T. Ozaki, H. Sagehashi, H. Sakai, S. Sakanaka, H. Sasaki, Y. Sato, M. Shimada, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, O. Tanaka, Y. Tanimoto, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, N. Yamamoto, Ma. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki, Japan
 
  Two synchrotron radiation sources of KEK, the PF-ring and the PF-AR, continue their user operation with various improvements. Scrap and build of the first generation undulators of 1980s at the PF-ring is pushed forward year by year. Five new elliptically polarized undulators have been installed in these five years, and we have also installed four very narrow-gap short-period undulators generating high brilliant X-ray. The new beam transport line that enables the 6.5-GeV full energy injection for PF-AR will be completed by the end of 2016 in order to make the top-up operation of the two SR sources compatible with the continuous injection for two main rings of the Super-KEKB. We have proposed a project of further upgrade of the 2.5-GeV PF-ring to improve its horizontal emittance as 8 nm rad using combined bending magnets at the arc sections. And we are also moving ahead on proposal of constructing a new KEK light source of an extremely low emittance as 0.3 nm rad. The progress and detail of our future project will be described in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW021 The Low Emittance Reconstruction of the Arc Section of the Photon Factory 2874
 
  • K. Harada, Y. Kobayashi, N. Nakamura, K. Oide, H. Sakai, S. Sakanakapresenter
    KEK, Ibaraki, Japan
 
  The present horizontal emittance of the Photon Factory (PF) ring is about 35.4 nmrad. By the reconstruction of the normal cells at the arc section, the emittance can be reduced to about 8 nmrad. The double number of the combined function short bending magnets are adopted and one present normal cell become two new normal cells. Although the lattice of the straight sections are not changed, the optics are optimized to reduce the non-linear effects of the sextupoles of the arc sections. By keeping the tune advance of the straight section as 3 for the horizontal direction and 2.5 for the vertical, the dynamic aperture as large as that of the present ring can be achieved with the magnetic errors. The difference of the optics of the straight sections are so little that the beam injection and the operation of the in-vacuum short-gap undulators can be maintained. The hardware design will be began as the next step for the realization of the plan. In this proceedings, the design, optimization and simulation results for the low emittance lattice are shown.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW023 Present Status of Accelerators in Aichi Synchrotron Radiation Center 2877
 
  • Y. Takashima, M. Hosakapresenter, A. Mano
    Nagoya University, Nagoya, Japan
  • Y. Hori, N. Yamamoto
    KEK, Ibaraki, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
  • S. Koda
    SAGA, Tosu, Japan
  • S. Sasaki
    JASRI/SPring-8, Hyogo, Japan
  • T. Takano
    Hitachi Ltd., Ibaraki-ken, Japan
 
  Aichi Synchrotron Radiation Center is the newest synchrotron radiation facility in Japan. The construction was started in 2010 and the facility was opened for public use on March 26, 2013. The circumference of the storage ring is 72 m with the electron energy of 1.2 GeV, the beam current of 300 mA and the natural emittance of about 53 nmrad. The beam is injected from a booster synchrotron with the energy of 1.2 GeV as full energy injection and the top-up operation has been carried out routinely with stored current of 300 mA since opened for public use. We have tested a pulsed multi-pole magnet for improving the deviation of the orbit of stored beam during the top-up beam injection. The storage ring consists of four triple bend cells. Eight of the twelve bending magnets are normal conducting ones. Four of them are 5 T superconducting magnets(superbend) of which bending angle is 12 degrees. The superbends are running without any trouble with refrigerator maintenance once per year. The accelerators have been operated about 1400 hours stable in a year. Eight of the synchrotron radiation beamlines have been operational for public use and other two beamlines are under construction.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW024 Commissioning of SESAME Booster 2880
 
  • M. Attal, I.A. Abid, T.H. Abu-Hanieh, H. Al-Mohammad, M.A. Al-Najdawi, D.S. Foudeh, A. Hamad, E. Huttel, A. Ismail, S.Kh. Jafar, F. Makahleh, M. Mansouri Sharifabad, K. Manukyan, I. Saleh, N.Kh. Sawai, M.M. Shehab
    SESAME, Allan, Jordan
 
  Commissioning of the 800 MeV booster of SESAME light source started in December 2013. The 38.4 m circumference booster is a part of SESAME injector which includes also a 20 MeV classical microtron as a pre-injector that is in operation since 2012. The main results and experience obtained during the commissioning period are reported in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW025 Exploring the Ultimate Linear and Nonlinear Performance of the HEPS hybrid 7BA design 2883
 
  • Y. Jiao, G. Xupresenter
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS), a kilometre- scale diffraction-limited storage ring (DLSR) light source, with a beam energy of 5 to 6 GeV and transverse emittances of a few tens of pm.rad, is to be built in Beijing. We have obtained a hybrid 7BA lattice design, with a natural emittance of about 60 pm.rad and a circumference of about 1.3 kilometres, basically satisfying the requirement of on-axis longitudinal injection in HEPS. Nevertheless, it is interesting and necessary to explore the ultimate linear and nonlinear performance of the HEPS hybrid 7BA design. In this paper, we will introduce the multi-objective optimization with a successive and iterative implementation of the MOPSO and MOGA algorithms, and discuss certain relations between the nonlinear dynamics and linear optics of a hybrid MBA lattice. This study can provide reference for other DLSR lattice design and optimizations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW026 Recent Physical Studies for the HEPS Project 2886
 
  • G. Xu, Z. Duan, Y.Y. Guo, D. Ji, Y. Jiao, X.Y. Li, Y.M. Peng, Q. Qin, J. Qiu, S.K. Tian, J.Q. Wang, N. Wang, Y. Wei, C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS), a kilometre- scale storage ring light source, with a beam energy of 5 to 6 GeV and transverse emittances of a few tens of pm.rad, is to be built in Beijing and now is under design. In this paper we reported the progress and status of the physical studies for the HEPS project, covering issues of storage lattice design and optimization, booster design, injection design, collective effects, error study, insertion device effects, longitudinal dynamics, etc.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW027 Initial Lattice Design for Hefei Advanced Light Source: A VUV and Soft X-ray Diffraction-limited Storage Ring 2889
 
  • Z.H. Bai, Q.K. Jia, W. Li, G. Liu, C.W. Luo, Q. Luo, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The upgrade project of Hefei Light Source was successfully completed in 2014 and has been operated for synchrotron radiation users since 2015, which is a second generation light source in the range of VUV and soft X-ray at NSRL in China. To meet the future requirements for users, more efforts are now putting at NSRL into the design of Hefei Advanced Light Source (HALS), a new VUV and soft-X ray diffraction-limited storage ring. The HALS storage ring will have an energy of 2 GeV and a natural emittance of about 50 pm·rad. This paper reports the initial lattice design studies, including linear optics design and nonlinear dynamics optimization.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW028 Applications of the Tune Measurement System of the HLS-II Storage Ring 2892
 
  • J.J. Zheng, C. Cheng, X.Y. Liupresenter, B.G. Sun, L.L. Tang, F.F. Wu, Y.L. Yang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (11105141, 11175173)
During the commissioning phase of the HLS-II storage ring, the betatron function, the natural chromaticity, the corrected chromaticity and the central RF frequency were measured using the Swept-Frequency-Exitation based tune measurement system. The betatron function was measured using the quadrupole modulation method. The natural chromaticity and the corrected chromaticity were measured using the dipole modulation method and the RF modulation method respectively. In addtion, the central RF frequency was measured using the sextupole modulation method, which can be viewed as a direct measure of the ring circumference. This paper describes the measurement details and presents the measurement results.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW029 Solaris Storage Ring Commissioning 2895
 
  • A.I. Wawrzyniak, P.B. Borowiec, Ł.J. Dudek, K. Karaś, A.M. Marendziak, K. Wawrzyniak, J. Wikłacz, M. Zając
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
  • C.J. Bocchetta, M. Boruchowski, P. Bulira, P.P. Goryl, A. Kisielpresenter, W.T. Kitka, M.P. Kopec, P. Król, M.J. Stankiewicz, J.J. Wiechecki, Ł. Żytniak
    Solaris, Kraków, Poland
  • R. Nietubyć
    NCBJ, Świerk/Otwock, Poland
 
  Funding: Work supported by the European Regional Development Fund within the frame of the Innovative Economy Operational Program: POIG.02.01.00-12-213/09
The Solaris storage ring represents a new class of light source that utilizes the innovative concept of a solid iron block containing all the Double Bend Achromat (DBA) magnets. The use of small magnet gaps brings the benefit of high fields but requires vacuum chambers of high me-chanical accuracy and distributed pumping. Due to very tight mechanical tolerances of the magnet blocks and of the vacuum vessels, the installation of the Solaris storage ring was a challenging task. In this paper the commission-ing results and the performance of this novel machine will be discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW031 Performance of the Vacuum System for the Solaris 1.5 GeV Electron Storage Ring 2898
 
  • A.M. Marendziak, C.J. Bocchetta, P.B. Borowiec, P. Bulira, Ł.J. Dudek, P.P. Goryl, K. Karaś, A. Kisiel, W.T. Kitka, M.P. Kopec, M. Madura, R. Nietubyć, M.P. Nowak, M.J. Stankiewicz, A.I. Wawrzyniak, K. Wawrzyniak, J.J. Wiechecki, J. Wikłacz, M. Zając, Z. Zbylut, Ł. Żytniak
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  Solaris is a third generation light source recently constructed at the Jagiellonian University in Kraków, Poland. The machine was designed by the team at the MAX IV Laboratory. A replica of the 1.5 GeV MAX IV storage ring with a 96 m circumference was successfully built at Solaris and now the facility is in its 3rd phase of commissioning. The average pressure in the storage ring was 1.2·10-10 mbar before beam commissioning and increases to 1.2·10-8 mbar with 511 mA of stored beam current for electron energy of 524 MeV. With 10 A·h accumulated beam dose, beam cleaning has permitted an average pressure of 3·10-10 mbar/mA. In this paper the result of vacuum performance from beam cleaning and the beam lifetime will be presented. Moreover vacuum maintenance procedures will be reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW032 Impact of the DBA Blocks Alignment on the Beam Dynamics of the Storage Ring in Solaris 2902
 
  • J.J. Wiechecki, C.J. Bocchetta, M. Boruchowski, P. Król, A.I. Wawrzyniak
    Solaris, Kraków, Poland
  • K. Karaś, A.M. Marendziakpresenter, R. Nietubyć
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  Installation of the Solaris synchrotron has been accomplished at the beginning of the 2015. Although the machine is a replica of the 1.5 GeV ring at MAX IV in Sweden, the entire group responsible for the installation, was facing numerous problems during the entire installation period. One of the most critical issues that are responsible for the proper functionality of the machine is the survey of the machine. An appropriate alignment of the components in accordance to each other as also to the building, provides a good quality of the beam so extensively desired by the beamline's users. This paper presents the results of the alignment in the 1.5 GeV ring, describes possible critical sectors of the ring that might influence the accuracy of the measurements and juxtapose the results with the values gained during the operational phase of the synchrotron. This comparison enables the identification of the beam losses and extension of the lifetime of the electron beam.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW033 Commissioning of the Alba Injector With 67 Mev Single Klystron Linac 2905
 
  • G. Benedetti, U. Irisopresenter, J. Marcos, Z. Martí, V. Massana, R. Muñoz Horta, F. Pérez, M. Pont
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The 3 GeV ALBA booster normally accelerates an injected beam of 110 MeV, delivered by the linac operating with two independent klystrons. On 2014, the linac waveguide system was upgraded and commissioned to allow operating with either klystron and providing a reduced beam energy of 67 MeV. The commissioning of the booster to capture the beam at a reduced energy and ramp it up to 3 GeV has required a long set-up process of the magnets at 67 MeV beam energy. Due to the dominant effect of the remnant magnetic field in the low energy regime, the scaling of the magnet settings at the beginning of the ramp did not allow to capture the beam, and more precise calibrations were measured on spare quadrupoles to ease its fine tuning. The effect of higher eddy currents induced when the dipoles start ramping, combined with the lower beam rigidity, has been also an issue to tune the dipole waveforms for the 67 MeV - 3 GeV cycle. The encountered problems and their solutions to commission the ALBA injector in this new mode of operation are here presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW034 Emittance Diagnostics at the Max Iv 3 Gev Storage Ring 2908
 
  • J. Breunlin, Å. Andersson
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  With the MAX IV project in Lund, Sweden an ultralow emittance storage ring light source is going into user operation in 2016. Due to its multibend achromat lattice design the 3 GeV storage ring reaches a horizontal emittance lower than 330 pm rad. Emittance diagnostic will involve two diagnostic beamlines to image the electron beam with infrared and ultraviolet synchrotron radiation from bending dipoles. Placed in locations of different optic functions the beamlines will provide experimental access to both horizontal and vertical emittance and to beam energy spread. Since bunch lengthening with harmonic cavities is essential for machine performance, time resolved measurements with synchrotron radiation for individual longitudinal bunch distributions are of special interest as well.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW035 Commissioning of the Harmonic Cavities in the MAX IV 3 GeV Ring 2911
 
  • G. Skripka, Å. Andersson, A.M. Mitrovic, P.F. Tavares
    MAX IV Laboratory, Lund University, Lund, Sweden
  • F.J. Cullinan, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  The MAX IV 3 GeV storage ring operates with beam of high current and ultralow emittance. These beam parameters in combination with the small effective aperture enhance possible collective beam instabilities. Three passive harmonic cavities are installed to introduce bunch lengthening and tune spread, leading to decoupling of the bunch spectrum from the machine effective impedance and mitigating instabilities by Landau damping respectively. In this paper we present the first results of the commissioning of the passive third harmonic cavities in the MAX IV 3 GeV ring. The additional harmonic cavity potential significantly improved the beam lifetime. First observations of the harmonic cavity effect on the damping of collective beam instabilities are discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW036 Bunch Length Measurements with Passive Harmonic Cavities for Uniform Fill Patterns in a 100 MHz RF System 2914
 
  • T. Olsson, S.C. Leemann, P. Lilja
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV facility includes two storage rings operated at 1.5 GeV and 3 GeV. Both rings make use of a 100 MHz RF system and are designed to operate with a uniform multibunch fill pattern as well as employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. Recently, a discussion on timing modes at the MAX IV storage rings has been initiated by the user community. This implies operating the rings with other fill patterns than the originally planned multibunch mode and therefore detailed studies of the performance of the harmonic cavities are of interest. This paper presents bunch length measurements at the 100 MHz MAX II storage ring for uniform fill patterns. The purpose of the measurements was to evaluate the employed measurement method and simulation codes for future studies of fill patterns in the MAX IV storage rings.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW037 Bunch Length Measurements with Passive Harmonic Cavities for Non-uniform Fill Patterns in a 100 MHz RF System 2918
 
  • T. Olsson, S.C. Leemann, P. Lilja
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV facility includes two storage rings operated at 1.5 GeV and 3 GeV, which are both designed to operate with a uniform, multibunch fill pattern. Both rings have a 100 MHz RF system and employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. Recently, a discussion on timing modes at the MAX IV storage rings has been initiated by the user community. Creating opportunities for timing experiments implies operating the rings with other fill patterns than the planned multibunch mode. Such operation can, however, cause transient effects in the passive harmonic cavities which affect the performance of the machine. It is therefore of interest to study the effect on the beam when operating with non-uniform fill patterns. This paper presents bunch length measurements at the 100 MHz MAX II storage ring for fill patterns with gaps. The purpose of the measurements was to evaluate the employed measurement method and simulation codes for future studies of various alternate fill patterns in the MAX IV storage rings.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW038 Proposed Upgrade of the SLS Storage Ring 2922
 
  • A. Streun, M. Aiba, M. Böge, C. Calzolaio, M.P. Ehrlichman, A. Müller, A. Saa Hernandezpresenter, H.S. Xu
    PSI, Villigen PSI, Switzerland
 
  A new storage ring is planned for the upgrade of the Swiss Light Source (SLS). It will replace the 12 triple bend achromats by twelve 7-bend achromats, which are based on low aperture longitudinal gradient bends (LGBs) and anti-bends (ABs), thus reducing the emittance from 5.0 nm to about 150 pm at 2.4 GeV while maintaining the source points of the undulator based beam lines. Sextupole and octupole strengths are determined using a multi-objective genetic algorithm (MOGA) and result in sufficient dynamic aperture for off-axis injection and several hours of Touschek lifetime. Superconducting LGBs of 5-6 T peak field will extend the photon range of the SLS up to 80-100 keV. The vacuum system will be based on a 20 mm inner diameter copper beam pipe with ante-chamber, and discrete getter pumps. It is planned to reuse the existing injector complex and the dynamically adjustable girder system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW039 Preliminary Beam Loss Study of TPS during Beam Commissioning 2926
 
  • C.H. Huang, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, D. Lee, C.Y. Liaopresenter, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan photon source (TPS) is a 3rd generation and 3 GeV synchrotron light source in NSRRC. Several types of beam loss monitors (BLMs) such as RadFETs and PIN-diode BLMs are installed in the storage ring to understand the beam loss distribution and mechanism during the injection, decay mode, top-up operation and beam trip. Several RadFETs are also installed around the inserting devices to study the beam loss near the linear scalar. The preliminary beam loss study using RadFETs are PIN-diode BLMs in the storage will be summarized in this report.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW040 Preliminary Beam Test for TPS Fast Orbit Feedback System 2930
 
  • P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Huang, C.Y. Liaopresenter
    NSRRC, Hsinchu, Taiwan
 
  TPS (Taiwan Photon Source) is a 3 GeV synchrotron light source which had be successfully commissioning with SRF up to 500 Amp in 2015 and scheduled to open user operation in 2016. As most of the 3rd generation light source, the fast orbit feedback system would be adopted to eliminate various disturbances and improve orbit stability. Due to the vacuum chamber material made of aluminum with higher conductivity and lower bandwidth, extra fast correctors mounted on bellows will be used for FOFB correction loop and DC correction of fast correctors would be transferred to slow ones and avoid fast corrector saturation. This report summarizes the infrastructure of the FOFB and the preliminary beam test is also presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW042 Properties of Synchrotron Radiation from Segmented Undulators based on a Wigner Distribution Function 2933
SUPSS009   use link to see paper's listing under its alternate paper code  
 
  • H.W. Luo, C.H. Lee
    NTHU, Hsinchu, Taiwan
  • T.Y. Chung, C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
 
  Three long straight sections with a double mini-βy lattice were designed in Taiwan Photon Source. For the purpose to understand whether the brilliance can be enhanced or not when two collinear undulators were installed in the double mini-βy. Therefore, the Wigner distribution function (WDF) is developed to calculate the brilliance in the double mini-βy lattice that is a natural way to describe a synchrotron radiation source. Herein, the brilliance is thereby calculable without a Gaussian approximation used in a conventional manner. Some important optical properties such as the degree of coherence can be directly calculated with this method. We use it as an example to investigate the properties of radiation from a segmented undulator.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW043 Accelerator Based Light Source Projects of Turkey 2936
 
  • A.A. Aksoy, Ö. Karslı, Ç. Kaya
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • B. Ketenoğlu, Ö. Yavaş
    Ankara University, Faculty of Engineering, Tandogan, Ankara, Turkey
  • Z. Nergiz
    Nigde University, Nigde, Turkey
 
  Three light source project is ongoing in Turkey within the frame of Turkish Accelerator Center (TAC) Project which has been supported by Ministry of Development since 2006. As a first facility of TAC, 3-250 μ mm IR-FEL facility (TARLA) based on superconducting accelerator with an energy of maximum 40 MeV is under construction at Institute of Accelerator Technologies of Ankara University. In addition to TARLA, Conceptual/Technical Design Report of a third generation synchrotron radiation facility based on 3 GeV, and a fourth generation FEL facility based 1-6 GeV is being prepared for the next steps of TAC. Therewithal a proton accelerator facility with up 2 GeV and an electron-positron collider as a super charm factory are proposed within the frame of TAC project. In this presentation, current status of TARLA project and main goals, road map of Turkish Light Sources will be explained.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW044 Study of a Double Triple Bend Achromat (DTBA) Lattice for a 3 GeV Light Source 2940
 
  • A. Alekou, R. Bartolini
    JAI, Oxford, United Kingdom
  • A. Alekou, R. Bartolini
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • A. Alekou, R. Bartolini, T. Pulampong, R.P. Walker
    DLS, Oxfordshire, United Kingdom
  • N. Carmignani, S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
 
  Starting from the concepts of the Hybrid Multi Bend Achromat (HMBA) lattice developed at ESRF and of the Double-Double Bend Achromat (DDBA) lattice developed at Diamond, we present a new cell that includes all the advantages of the two designs. The resulting Double Triple Bend Achromat (DTBA) cell allows for a natural horizontal emittance of less than 100 pm with a large dynamic aperture and lifetime. It includes two straight sections, for insertion devices, five and three meters long. The lattice is consistent with the engineering design developed for the ESRF-EBS lattice and the layout and user requirements of Diamond. The characteristics of the cell are presented together with the results of the optimisation process.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW045 Concepts for a Low Emittance-High Capacity Storage Ring for the Diamond Light Source 2943
 
  • R. Bartolini, G. Cinque, G. Evans, K. Sawhney, J. Zegenhagen
    DLS, Oxfordshire, United Kingdom
 
  The Diamond Light Source is investigating several paths for a possible machine upgrade to Diamond II. The exercise is driven by by a joint assessment of the science capabilities opened by a very low emittance ring and the machine design that will underpin them. The consultation is made on a beamline-by-beamline basis and has highlighted a significant preference for lattices that combine both a low emittance and large capacity for IDs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW046 Status of the Front Ends Project at MAXIV 2947
 
  • A. Bartalesi, Y. Cerenius
    MAX IV Laboratory, Lund University, Lund, Sweden
  • S. Forcat Oller
    SLAC, Menlo Park, California, USA
 
  The MAX IV laboratory is a Swedish national laboratory for synchrotron radiation hosted by the Lund University. It will operate two storage rings to produce synchrotron light of very high intensity and quality over a broad wavelength range. A linear accelerator will feed these storage rings in topping up mode as well as serve as an electron source for a short pulse facility built on its extension. The storage rings have different sizes and operates at different energies: the MAX IV 1.5 GeV ring has 12 straight sections optimized for soft x-rays; while the MAX IV 3.0 GeV ring, has 20 straight sections, optimized for harder x-rays. In the initial stage of the project, five beamlines are foreseen to operate on the 3 GeV storage ring and an additional five on the 1.5 GeV ring. Each beamline requires a front end to interface the different characteristics in terms of vacuum level, heat loads, radiation safety, beam size and position, with respect to the storage ring. This paper describes the status of the different Front Ends project at MAXIV.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW047 A Hybrid Superconducting/Normal Conducting RF System for the Diamond Light Source Storage Ring 2950
 
  • C. Christou, A.G. Day, P. Gu, N.P. Hammond, J. Kay, M. Maddock, P.J. Marten, S.A. Pande, A.F. Rankin, D. Spink
    DLS, Oxfordshire, United Kingdom
 
  300 mA beam in the Diamond Light Source storage ring is presently maintained by two 500 MHz superconducting CESR-B cavities. Cavity reliability is acceptable at modest operating voltages up to 1.4 MV per cavity but falls off rapidly beyond this value. The installation of an extra cavity or cavities would reduce the voltage demand on the current superconducting cavities and also the operating power level of the high power amplifiers, with commensurate improvement in machine reliability. Furthermore, two superconducting cavity failures in recent years have resulted in machine down-time and reduced-current operation and repair has proven to be prolonged and expensive. It is therefore planned to install two normal conducting cavities into the ring to support operation of the superconducting cavities and to act as a safeguard against any future superconducting cavity failures. Details are presented in this paper of plans and progress towards the installation of the hybrid RF system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW048 Preparations for the Double Double Bend Achromat Installation in Diamond Light Source 2953
 
  • R.P. Walker, C.A. Abraham, C.P. Bailey, R. Bartolini, P. Coll, M.P. Cox, N.P. Hammond, M.T. Heron, S.E. Hughes, J. Kay, I.P.S. Martin, S.P. Mhaskar, A.G. Miller, A.J. Reed, G. Rehm, E.C.M. Rial, A.J. Rose, A. Shahveh, H.S. Shiers, A. Thomson
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  We present the status of preparations for a major installation in the Diamond storage ring which is due to take place in 2016, namely the conversion of one cell of the ring from a double bend achromat (DBA) structure, to a double-DBA, or DDBA. We present results of measurements of the new narrow bore, high strength, quadrupoles and sextupoles, as well as the four new gradient dipoles. Fabrication of entirely new narrow-gap vacuum vessel strings, a mixture of copper and stainless steel is also described. The status of assembly of the two 7m long girders is presented, as well as other preparatory engineering, power supply, controls and high level software work.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW049 Physics Design Progress towards a Diffraction Limited Upgrade of the ALS 2956
 
  • C. Steier, J.M. Byrd, S. De Santis, H. Nishimura, D. Robin, F. Sannibale, C. Sunpresenter, M. Venturini, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.
Improvements in brightness and coherent flux of more than two orders of magnitude are possible using multi bend achromat lattice designs. These improvements can be implemented as upgrades of existing facilities, like the proposed upgrade of the Advanced Light Source. We will describe the progress in the physics design of this upgrade, including lattice evolution, error tolerance studies, simulations of collective effects, and intra beam scattering.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW050 Optimization of the ALS-U Storage Ring Lattice 2959
 
  • C. Sun, H. Nishimura, D. Robin, F. Sannibale, C. Steier, M. Venturini, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory is proposing the upgrade of its synchrotron light source to reach soft x-ray diffraction limits within the present ALS footprint. The storage ring lattice design and optimization of this light source is one of the challenging aspects for this proposed upgrade. The candidate upgrade lattice needs not only to fulfill the physics design requirements such as brightness, injection efficiency and beam lifetime, but also to meet engineering constraints such as space limitations, maximum magnet strength as well as beamline port locations. In this paper, we will present the approach that we applied to design and optimize a multi-bend achromat based storage ring lattice for the proposed ALS upgrade.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW051 R+D Progress Towards a Diffraction Limited Upgrade of the ALS 2962
 
  • C. Steier, A. Anders, J.M. Byrd, K. Chow, S. De Santis, R.M. Duarte, J.-Y. Jung, T.H. Luo, H. Nishimura, T. Oliver, J.R. Osborn, H.A. Padmore, G.C. Pappas, D. Robin, F. Sannibale, D. Schlueter, C. Sun, C.A. Swensonpresenter, M. Venturini, W.L. Waldron, E.J. Wallén, W. Wan, Y. Yang
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.
Improvements in brightness and coherent flux of about two orders of magnitude over operational storage ring based light sources are possible using multi bend achromat lattice designs. These improvements can be implemented as upgrades of existing facilities, like the proposed upgrade of the Advanced Light Source, making use of the existing infrastructure, thereby reducing cost and time needed to reach full scientific productivity on a large number of beamlines. An R&D program was started at LBNL to further develop the technologies necessary for diffraction-limited storage rings. It involves many areas, and focuses on the specific needs of soft x-ray facilities: NEG coating of small chambers, swap-out injection, bunch lengthening, magnets/radiation production, x-ray optics, and beam physics design optimization. Hardware prototypes have been built and concepts and equipment was tested in beam tests on the existing ALS.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW052 Multimodal Interaction in the ALS Longitudinal Feedback Kicker RF Cavity 2965
 
  • S. De Santis, K.M. Baptiste, J.M. Byrd, S. Kwiatkowski, T.H. Luo, E.R. Sanmateo, C. Steier, C.A. Swensonpresenter
    LBNL, Berkeley, California, USA
  • F. Marcellini
    PSI, Villigen PSI, Switzerland
 
  Funding: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
RF cavities are essential components in particle accelerators not only for beam acceleration, but also for control purposes (bunch lengthening/shortening, deflecting and crabbing, transverse and longitudinal kickers) and for beam diagnostics (BPM). Normally, only a single resonating mode is actively used, although other modes can be excited by the circulating beam. Cavities used as feedback longitudinal kickers are designed with an axial mode which, appropriately excited, provides a kick to the circulating bunches for maintaining beam stability. To provide the necessary bandwidth this mode has to be strongly damped resulting in quality factors of just a few units. In the longitudinal feedback kicker cavity just installed on the ALS we have detected a second axial mode which, although a few hundreds of MHz below the 1.4 GHz design mode, is also strongly damped and has a shunt impedance high enough to be appreciably excited by the feedback amplifier coupling to the first mode. In this paper we show bench measurements on the cavity and with beam during its commissioning and discuss the interaction of the two modes resulting in a modulation of shunt impedance and phase response.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW053 CESR Lattice for Two Beam Operations with Narrow Gap Undulators at CHESS 2968
 
  • S. Wang, D. L. Rubin, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work was supported by NSF DMR-0936384 and NSF DMR-1332208.
CESR has operated as a dedicated light source since the conclusion of colliding beam program in 2008. Two undulators with a 6.5mm-vertical gap were installed in Fall 2014, replacing a wiggler in the sextant of CESR that is the home to all CHESS beam lines. In order to operate narrow gap undulators with two beams, CESR pretzel lattice was redesigned so that e- and e+ orbits are coincident in one machine sextant but separated in return arcs. In particular both e- and e+ orbits are on axis through undulators. This "arc-pretzel" lattice has been the basis for undulator operation. To better understand the beam dynamics and improve machine performance, we developed many simulation tools: undulator modeling, injection tracking, etc. With installation of an additional quadrupole near undulators, the CESR lattice will be further modified with a low beta waist in the insertion devices, allowing a more than two fold reduction of local beta functions. This reduction is anticipated to mitigate the effects of small aperture and undulator field errors and to enhance the xray brightness. The characterization of the lattice will be compared with measurements of injection efficiency, tune scans, etc.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW055 Bayesian Optimization of FEL Performance at LCLS 2972
 
  • M.W. McIntire, T.M. Cope, D.F. Ratnerpresenter
    SLAC, Menlo Park, California, USA
  • S. Ermon
    Stanford University, Stanford, California, USA
 
  Funding: Research is supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515.
The LCLS free-electron laser at SLAC is tuned via a huge number of parameters such as energy and magnet settings. Much of this tuning, including quadrupole magnet settings, is typically done by hand by the LCLS operators. In this paper we introduce an automated tuning system using Bayesian optimization, and describe its application to the optimization of noisy objectives such as FEL performance. We demonstrate with preliminary results from our implementation at LCLS that this system can improve both the speed of tuning procedures as well as the quality of the resulting solution.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW056 Reproducibility of Orbit and Lattice at NSLS-II 2976
 
  • J. Choi, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE contract No: DE-SC0012704
In operating a high-end synchrotron light source, like NSLS-II, it is important to understand the machine accurately and have the ability to reproduce the desired machine state when needed. The obstacles, we can imagine, include the magnet hysteresis effect and some environmental effects. To minimize hysteresis effect, we cycle the magnets and it was proved working properly. On the other hand, from the point of long-term operation, we are not yet satisfied with the reproducibilities given by the same set of magnet currents and the machine needs additional tuning processes. In this paper, the experience of NSLS-II operation and studies are presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW057 Spectral Analysis of Turn-by-Turn Data 2979
 
  • J. Choi
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE contract No: DE-SC0012704
With the recent technical developments, it is now popular to get the turn-by-turn data for the storage ring. Even though response matrix based analysis, like LOCO, have strong advantages in lattice analysis, the turn-by-turn data analysis is quite attractive because it takes very short time in data acquisition and many effective analyzing methods have been developed. Basically, such analysis requires accurate estimation of peaks of frequency spectra with high resolution. In this paper, we review the various accuratenesses of such estimations depending on processes using exact sinusoidal data and apply the end-matching method to simulation and measurement.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW058 Top-off Tests and Controls Optimization 2982
 
  • G.M. Wang, M.A. Davidsaver, A.A. Derbenev, R.P. Fliller, Y. Hu, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE No.DE-AC02- 98CH10886
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. As in many other light sources, top-off injection is considered as a standard operation mode resulting in more stable beam intensity to minimize heat load variation on the beamline optics. Top off injection specifications include maintaining the stored beam current within 0.5% and the bunch to bunch charge variation within 20% bands. To make the top off commissioning smooth and efficient, a virtual machine model based on the measured beam properties was developed. The model helped to study robustness of this application operating under different conditions and optimize the input parameters. Once tested the model was transitioned to beam commissioning. To make the beam tests more efficient, the beam lifetime was controlled by adjusting RF voltage and scrapers. In this paper, we'll share the experience from the test stage to machine implementation of the top-off controls.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW059 The NSLS-II Top Off Safety System 2985
 
  • R.P. Fliller, D. Bergman, A. Caracappa, L. Doom, G. Ganetis, Y. Hu, Y. Li, W. Louie, D. Padrazo, O. Singh, J. Tagger, G.M. Wangpresenter, Z. Xia
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Top Off operation is the desired mode of operation for 3rd generation light sources to ensure beam current stability for user experiments. However, top off operation introduces the hazard of injecting electrons into the front ends with the beamline shutters open. This hazard can be mitigated with the appropriate safety system. This past year, the NSLS-II has transitioned from decay mode to top off operation with the introduction of the Top Off Safety System (TOSS). Top Off was initially demonstrated September 22, 2015 and become standard mode of operating. In this paper we discuss the top off safety system, operation with the system, and future directions.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW060 Top Off Algorithm Development and Commissioning at NSLS-II 2988
 
  • R.P. Fliller, A.A. Derbenev, T.V. Shaftan, G.M. Wangpresenter
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Recently, NSLS-II introduced top off as the standard mode of beam delivery for the users. During top off, we are required to maintain the beam current within ±0.5% of nominal, and the bunch to bunch variation over the train less than 20% for all operating conditions. In this paper, we discuss the algorithm used for top off, simulations of various operating conditions and performance of the algorithm during operations.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)