Keyword: site
Paper Title Other Keywords Page
MOPC093 Novel Field Emission Scanner for Surface Study of Niobium SRF Cavity cavity, SRF, electron, controls 295
 
  • S. Kato, M. Nishiwaki, T. Noguchi
    KEK, Ibaraki, Japan
  • V. Chouhan
    GUAS, Kanagawa, Japan
  • P.V. Tyagi
    Sokendai, Ibaraki, Japan
 
  It is mandatory to investigate field emission on Nb SRF cavity systematically since strong field emission often limits the cavity performance. The field emission strength and the number of emission sites strongly depend on Nb surface properties which are determined by its surface treatment and handling. Field emission scanner (FES) developed allows us to measure a distribution of the field emitting sites over a sample surface at a given field strength along with its FE-SEM observation and energy dispersive x-ray analysis. FES consists of an anode needle driven by precise 3D stepping motors and an eucentric sample stage. The compact scanner was installed into the space between the object lens and the SEM sample holder. In addition, this system was newly equipped with a sample load-lock system for existing UHV suitcases. Therefore a sample coupon to be observed is hardly exposed to contaminants and dust particles during the transportation. In-situ heating of a sample coupon can be done during an experiment to simulate a baking process of a SRF cavity. This article describes development of the field emission scanner and its preliminary results of the application to niobium samples.  
 
MOPO032 The Survey Status at NSRRC during the TPS Civil Construction survey, alignment, controls, photon 553
 
  • H.M. Luo, J.-R. Chen, Chen, M. L. Chen, H.C. Ho, K.H. Hsu, W.Y. Lai, C.J. Lin, S.Y. Perng, P.L. Sung, Y.L. Tsai, T.C. Tseng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  In this paper, the survey status at NSRRC site duirng the TPS (Taiwan Photon Source) civil construction is described. The TLS (Taiwan Light Source) ring is still under operation in the meantime. In order to maintain the TLS for normal operation and also monitoring the building construction, an expanded survey setups including permanent leveling and GPS monuments were installed both on the site and TPS building. Combined with the orignal TLS survey sockets and sensor monitoring system (hydrostatic leveling system and precision inclination sensors) installed both in the TLS storage ring and beamlines, an extensive survey tasks were performed. The ground deformation situation of the TLS and deviation of the TPS building construction are presented.  
 
MOPO035 Stability of the Floor Slab at Diamond Light Source insertion, insertion-device, storage-ring, target 562
 
  • J. Kay, K.A.R. Baker, W.J. Hoffman
    Diamond, Oxfordshire, United Kingdom
  • I.P.S. Martin
    JAI, Oxford, United Kingdom
 
  A Hydrostatic Leveling System (HLS) has been installed at Diamond Light Source. 8 sensors have been positioned along a 60 metre portion of the floor of the Storage Ring and the Experimental Hall, stretching out along a typical beamline route from Insertion Device to sample. Results since June 2008 are presented comparing actual performance with the original specification as well as identifying movements associated with environmental factors.  
 
TUPC017 Civil Engineering Studies for Major Projects after LHC collider, interaction-region, civil-engineering, linac 1030
 
  • J.A. Osborne, F.J. Magnin, E. Perez-Duenas
    CERN, Geneva, Switzerland
 
  CERN civil engineers are heavily involved in studying several major projects to succeed/complement the LHC. Infrastructure works typically represent one third of the cost of major physics projects, so it's critical that the construction costs are well understood from the conceptual stage. For example, CERN are studying infrastructure requirements for the Linear Collider (CLIC & ILC) and the LHeC projects. This poster presents some of the key civil engineering challenges faced in such large scale projects.  
 
TUPS031 The Installation of One 14 Meter Cell of TPS Vacuum System vacuum, photon, laser, synchrotron 1599
 
  • H.P. Hsueh, C.K. Chan, C.H. Chang, C.-C. Chang, C.L. Chen, C.M. Cheng, Y.T. Cheng, G.-Y. Hsiung, S-N. Hsu, I.T. Huang, T.Y. Lee, H.Y. Yan, Y.C. Yang, C.S. huang
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The construction of a new 3 GeV synchrotron facility, Taiwan Photon Source, is ongoing. The vacuum system has been designed with off-site baking for arc section from sector gate valve to sector gate valve. There is no flange used in this arc section besides the two ends connected to sector gate valves. It is a tedious works for install such long vacuum system with aluminum chambers. In this poster, all the detailed installation procedures will be described. All the precaution inspection procedures for all vacuum components to prevent failed components to be installed will also be described. Every three weeks, one cell will be assembled and stored. Experience is being learned and could be used for the vacuum system of future new accelerator like FEL and others.  
 
TUPS061 CERN Safety Alarm Monitoring controls, monitoring, fibre-optics, power-supply 1674
 
  • H. Nissen, S. Grau
    CERN, Geneva, Switzerland
 
  The CERN Safety Alarm Monitoring system acquires safety alarms and safety information generated by CERN safety equipment such as fire and gas detectors, evacuation, emergency stops and other safety related systems, which are located in both surface and underground areas of CERN sites and accelerators. Currently there are 22170 alarms from 1025 safety equipments. This information is transmitted in a high priority and diversely redundant way to the CERN Safety Control Room for immediate intervention of the CERN Fire Brigade. The system was designed based on two main standards, the EN 50136 and IEC 61508 and was commissioned in 2003. In 2009 it was decided to launch a consolidation project in order to upgrade both hardware and software. The consolidation project includes deployment of a private CERN wide fiber optic TCP/IP network for the transmission of safety alarms, an upgrade of the SCADA software, a database upgrade and the replacement of all computers. In this paper the system is presented, the ongoing consolidating work is detailed and the middle and long term improvement plans for the system are described.  
 
TUPS062 The Ground Testing of TPS Ground System impedance, synchrotron, storage-ring, background 1677
 
  • T.-S. Ueng, J.-C. Chang, C.K. Kuan, Y.-C. Lin
    NSRRC, Hsinchu, Taiwan
 
  A ground grid of 4 rings and 62 vertical electrodes has been constructed for the TPS storage ring. The ground resistance was designed to be smaller than 0.2 ohms in order to give a good protection of the TPS electrical facility and personnel. In order to match the building construction schedule the TPS ground grid has been installed about 1/6 segment of the construction project each period. The ground impedance of each segment was measured right after the installation. The ground grid with the diameter of 200 m of outside ring and its low impedance value, also the limit testing space, challenged the measurement of ground resistance. Several different methods of ground testing have been used and the measured results are compared each other. These methods include fall-of-potential method, slope method, intersecting curves method and the test-current-reversal method. The final TPS ground impedance will be measured and compared with the calculation from combining the previous several segment measurements. The actual TPS ground resistance should have a smaller value than expected.  
 
TUPS075 Experimental determination of impedance and delay time of the 100 Ω meander transmission line for the SPIRAL2 Single Bunch Selector impedance, ion, simulation, single-bunch 1710
 
  • M. Di Giacomo
    GANIL, Caen, France
  • P. Balleyguier
    CEA/DAM/DPTA/SP2A, Bruyères-le-Châtel, France
  • A.C. Caruso, F. Consoli
    INFN/LNS, Catania, Italy
  • A. Longhitano
    ALTEK, San Gregorio (CATANIA), Italy
 
  The Spiral2 driver requires a Single Bunch Selector to reduce the bunch repetition rate at the experimental targets. A 100 Ω meander line is used in the beta 0.04 medium energy line of the Spiral2 driver. The non standard characteristic impedance figure helps to reduce the pulsed power but introduces the problem of calibrated measurements. The paper describes the results of the different methods used to measure the impedance and the delay of the electrodes.  
 
TUPS081 3D Visualization, Simulation and Virtual Reality in Accelerator Development simulation, linear-collider, collider 1728
 
  • L. Hagge, A. Herz, J. Kreutzkamp, S. Lang, V. Rupprecht, S. Sühl, N. Welle
    DESY, Hamburg, Germany
 
  Visualizing complex beamline designs, animating installation procedures and virtually walking through planned facilities - 3D modelling is a powerful tool with a broad range of applications in accelerator development. The poster describes established and emerging 3D modelling applications at the European XFEL and their benefits: 3D visualization enables inspection and compliance analysis of interfacing systems and components. Simulations enable early verification of e.g. safety and transportation concepts. Digital humans can be inserted into accelerator models to perform e.g. reachability and field-of-sight studies for installation works. Movies of transport and installation procedures can be created for staff training. And ultimately, stereo projection can be used to inspect and simulate designs and processes in virtual environments. 3D modelling helps discovering and resolving design issues earlier and leads to large savings in time and cost.  
 
TUPS097 In-situ Experiments of Vacuum Discharge using Scanning Electron Microscopes electron, vacuum, ion, high-voltage 1765
 
  • T. Muranaka, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • T. Blom, K. Leifer
    Uppsala University, Department of Engineering Sciences, Uppsala, Sweden
 
  Funding: This work is supported by the 7th European Framework Program EuCARD under grant number 227579
Fundamental understandings of vacuum discharge mechanisms and involving surface damage is an indispensable for CLIC feasibility study. We have been conducting dc experiments inside a Scanning Electron Microscope (SEM) at Uppsala university in order to investigate localised breakdown phenomena. By using a SEM, we achieve the resolution of the electron probe in the few-nm range, which is of great advantage as the surface roughness of the polished accelerating structures is in the same scale. The high accelerating field of 1 GV/m is realised by biasing an electrode with 1 kV set above the sample with a gap of sub μm. Furthermore, a second SEM equipped with a Focused Ion Beam (FIB) is used to modify the topography of sample surfaces thus the geometrical dependence of field emissions and vacuum discharges could be studied. The FIB can be used for the surface damage analysis as well. We have demonstrated subsurface damage observations by using FIB to sputter a rectangular recess into the sample in the breakdown region. Those powerful surface analysis techniques can be productively applied to the study of fatigue in prototype accelerating structures.
 
 
TUPZ041 Site Studies for the SuperB Collider and Synchrotron Radiation Facility Project ground-motion, collider, linac, injection 1900
 
  • S. Tomassini, M.E. Biagini, P. Raimondi, C. Sanelli
    INFN/LNF, Frascati (Roma), Italy
  • B. Bolzon
    CERN, Geneva, Switzerland
  • G. Deleglise, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • J.T. Seeman
    SLAC, Menlo Park, California, USA
 
  The SuperB project aims at the construction of a very high luminosity (1036 cm-2 s−1) asymmetric electron-positron collider. Due to its large beam current (~2 A) high energy (~7 GeV) and low vertical emittance (less than 10-11 m) the facility looks very attractive as an x-ray synchrotron radiation source, and therefore few beam lines are also foreseen. Possible locations are the campus of the University of Rome Tor Vergata or near another Italian INFN laboratory site. This paper presents and describes the status of the preliminary design of the civil infrastructure layout and related site issues.  
 
WEPS055 Beam Commissioning Plan of PEFP 100-MeV linac linac, DTL, proton, rfq 2619
 
  • J.-H. Jang, Y.-S. Cho, H.-J. Kwon
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was supported by Ministry of Education, Science and Technology of the Korean Government.
Proton engineering frontier project (PEFP) is developing a 100-MeV proton linear accelerator. It is scheduled to install the linac at Kyeungju site from the end of 2011. The linear accelerator consists of a 50-keV injector, a 3-MeV radio-frequency quadrupole (RFQ), and a 100-MeV drift tube linac (DTL). An important characteristic of this accelerator is extracting 20-MeV proton beams just after four DTL tanks. In this region, a medium energy beam transport (MEBT) will be installed for matching the proton beam to the following accelerator and extracting proton beams. The 100-MeV proton beams will be supplied to the users through another beam line which is located after the linac. This work summarized the beam commissioning plan of the proton linear accelerator.
 
 
WEPS100 Status of 100-MeV Proton Linac Development for PEFP linac, proton, DTL, alignment 2742
 
  • Y.-S. Cho, S. Cha, I.-S. Hong, J.-H. Jang, D.I. Kim, H.S. Kim, H.-J. Kwon, K. Min, B.-S. Park, J.Y. Ryu, K.T. Seol, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
  • J.S. Hong
    KAPRA, Cheorwon, Republic of Korea
 
  Funding: This wok was supported through the Proton Engineering Frontier Project by the Ministry of Education, Science and Technology of Korea.
The Proton Engineering Frontier Project (PEFP) is developing a 100-MeV high-duty-factor proton linac, which consists of a 50-keV microwave ion source, a 3-MeV radio frequency quadrupole, a 100-MeV drift tube linac, a 20-MeV beam transport line, and a 100-MeV beam transport line. It will supply proton beams of 20-MeV and 100-MeV with peak current of 20 mA to users for proton beam applications. The beam duty factor will be 24% and 8% respectively. The 20-MeV front-end accelerator has been installed and operated at the KAERI Daejeon test stand for user service, and the rest part of the accelerator has been fabricated and will be installed at the new site of Gyeongju City in 2011. The detailed status of the 100-MeV proton linac will be presented.
 
 
THPC172 Superconducting 119-pole Wiggler for ALBA Light Source wiggler, vacuum, electron, radiation 3302
 
  • N.A. Mezentsev, S.V. Khrushchev, V.K. Lev, E.G. Miginsky, V.A. Shkaruba, V.M. Syrovatin, V.M. Tsukanov, A.A. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • J. Campmany, D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  Budker INP of Siberian Branch of the Russian Academy of Science has designed, manufactured and tested 119-pole superconducting wiggler for ALBA CELLS light source. The period length and maximal field of the wiggler are 30 mm 2.2 Ò correspondingly. Pole gap and vertical aperture for electron beam are 12.6 mm and 8.5 mm, accordingly. The wiggler magnetic structure closely comes nearer to undulator structure as K-value is about 6. The wiggler cryostat is bath cryostat type with use of cryocoolers which provide zero liquid helium consumption for long period. In June, 2010 the wiggler has been successfully tested on ALBA site. Test results of the wiggler including magnetic measurement, quench training, cryogenic system behavior for various mode of operation are presented.  
 
THPS064 Application of X-band 3.95 MeV Linac X-ray Source for On-site Bridge Inspection linac, target, gun, electron 3571
 
  • H.F. Jin, K. Demachi, K. Dobashi, T. Fujiwara, M. Uesaka, H. Zhu
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
 
  We developed an X-ray non-destructive (NDT) system for on-site bridge inspection. A portable X-band (9.3-12 GHz) 3.95MeV linear accelerator (linac) has been developed for this system. The system consists of X-ray of 62kg without the target collimeter of 80kg, the RF power source of 62kg and other utility box of 116kg. For the onsite investigation, a flexible waveguide is used for this linac. And the linac is a point X-ray source. For X-ray detection, we chose 8-inch square size scintillation type flat panel detector. The spatial resolution of the detector is as high as 0.2mm, which is manufactured by Perkin Elmer Co. Cd2O2S:Tb is used for the scintillator crystal. The capable radiation energy range is 40keV to 15MeV. In order to realize quick inspection for a bridge, remote control robot which handles and compact X-ray source and detector are desired. Therefore, we developed 3D location system for this robot. The locating system is realized with image processing with its camera. For the operation, stereoscopic radiographic image is taken and analyzed, and computed tomography (CT) image analysis is taken for detailed inspection.
Non-destructive test (NDT) , X-ray Source, X-band, Linac, Detector, Computed Tomography (CT).
 
 
THPS065 Upgraded X-band 950 KeV Linac X-ray Source for On-site Inspection at Petrochemical Complex linac, status, coupling, shielding 3574
 
  • M. Jin, K. Demachi, K. Dobashi, H.F. Jin, T. Natsui, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • J. Kusano, N. Nakamura, M. Yamamoto
    Accuthera Inc., Kawasaki, Kanagawa, Japan
  • E. Tanabe
    AET, Kawasaki-City, Japan
 
  Abstract―Our portable X-band (9.3GHz) 950KeV linac has been successfully upgraded. The problems of RF power oscillation, beam current oscillation and reduction and finally lack of X-ray intensity were solved by replacing the axial coupling cavities with the side-coupled ones. Designed X-ray dose rate of 0.05 Sv/min@1m is going to be achieved. Length of the accelerating tube is reduced to less than 25 cm. X-ray source part with the local radiation shielding is connected by the flexible waveguide with the box of the 300 kW magnetron and cooling unit. The total system consists of the three suit-case-size units, the last of which is one for the electric power supply. Even on-line dynamic transmission imaging is available by using the high intensity X-ray camera. Demonstration of the measurement of wall thinning of metal pipes with thick thermal shielding is under way. Updated measurement results will be presented. KEYWORDS: portable X-band linac X-ray source, on-site high energy X-ray inspection, petrochemical complex  
 
THPS067 The TOP-IMPLART Project proton, DTL, klystron, booster 3580
 
  • C. Ronsivalle, M.C. Carpanese, G. Messina, L. Picardi, S. Sandri
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • M. Benassi, L. Strigari
    IFO, Roma, Italy
  • E. Cisbani, S.F. Frullani, V. Macellari
    ISS, Rome, Italy
  • C. Marino
    ENEA Casaccia, Roma, Italy
 
  The TOP-IMPLART project, developed by ENEA, the Italian National Institute of Health (ISS) and Regina Elena National Cancer Institute-IFO-Rome is devoted to the realization of a proton therapy centre to be sited at IFO, based on a sequence of linear accelerators and designed with three treatment rooms: one with a 150 MeV beam for shallow tumors and two with a 230 MeV beam for deep tumors. The first part of the acronym remarks the heritage from the TOP Project developed in 1998-2005 by ISS and ENEA, whilst the second part (“Intensity Modulated Proton Linear Accelerator for RadioTherapy”) exploits the possibility to perform a highly conformational therapy based on spatial and intensity modulation of the beam. The segment up to 150 MeV, funded by the Italian “Regione Lazio” for 11M€ over four years, is under installation at ENEA-Frascati for its validation before the transfer to IFO. The low energy part is also used as a facility for radiobiology experiments in the framework of a satellite program foreseeing cells irradiation at 7 MeV with a vertical and horizontal beam and small animal irradiation with a 17.5 MeV horizontal beam. The status of the Project is presented.