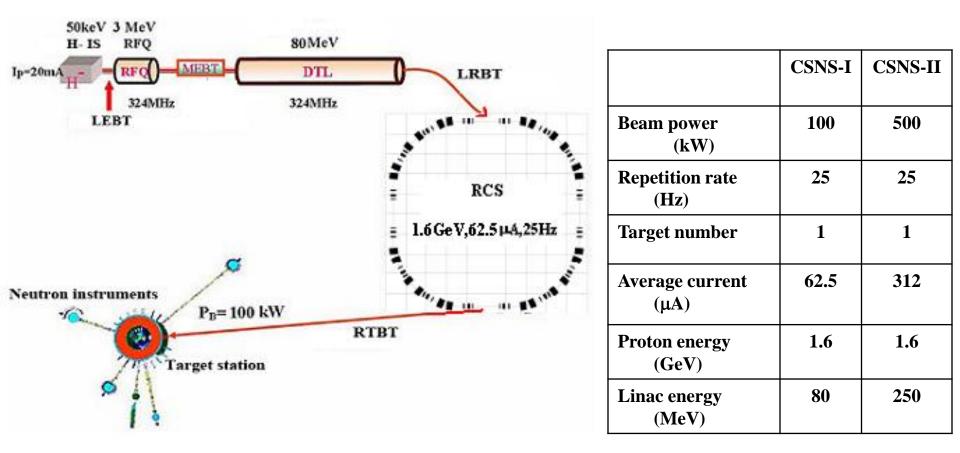
Status and Challenges of China Spallation Neutron Source

Shinian FU for CSNS team Institute of High Energy Physics, Beijing

IPAC 2011, San Sebanstian, Spain, 5-9, September 2011


- Project Overview
- Accelerator Design
- Key Technology R&D
- Summary

Project Overview

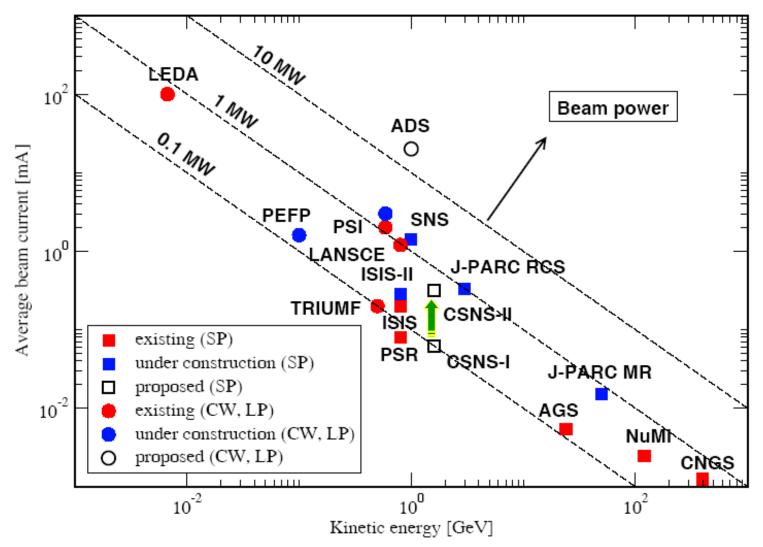
CSNS Project

Design Goal

Beam power	•		Energy	Max neutron flux*
(kW)			(GeV)	(n/cm ² /s)
100	25	63	1.6	10 ⁶

* Measured at 14m from modulator

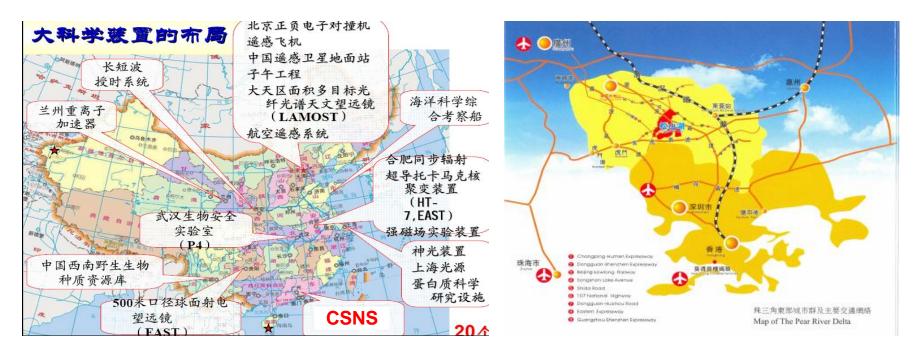
- Design goal will be met three years after acceptance.
- Project acceptance goal is 1/10 beam power goal.


Acceptance Goal

Beam power Repetition		Beam current	Energy	Max neutron flux*
(kW) (Hz)		(_µ A)	(GeV)	(n/cm ² /s)
10	25	6.3	1.6	10 ⁵

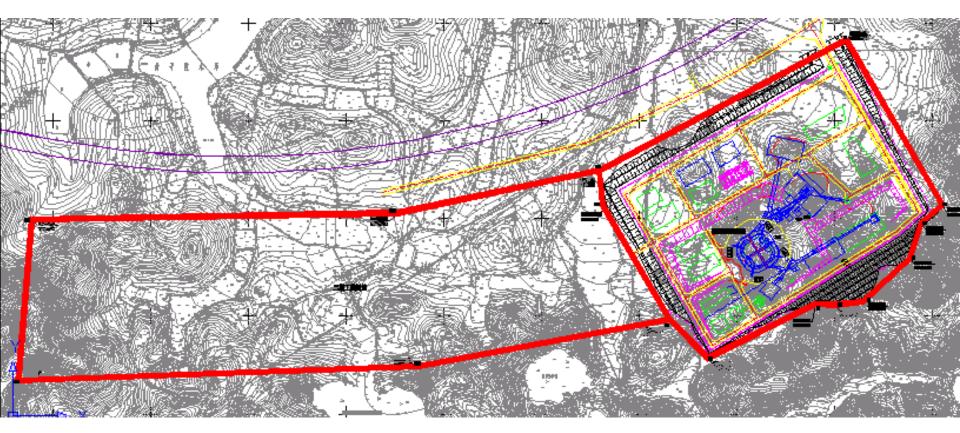
• Upgradeable to 500kW at 25Hz in the second phase.

Power Map of Proton Accelerators



Key Milestones

- Feb. 2001: Idea of CSNS discussed
- Jun. 2005: Project proposal approved in principle by central government
- Jan. 2006 : CAS funded (35M CNY) for R&D 1
- Jul. 2007 : Guangdong funded (40M CNY) for R&D 2
- Dec. 2007: Project proposal review
- Sep. 2008: Project proposal approved by central government
- Oct. 2009: Project feasibility study review
- May 2010: Project design review
- Sep. 2011: Project construction start
- Mar. 2018: Project completion


Site Selection

- The site of CSNS has been selected at Dongguan, Guangdong Province.
- CSNS is the first large scientific facility in southern part of China. It can balance the present uneven distribution of the facilities, and promote advanced researches in the economic developed zone of Guangdong-Hongkong.

Site Area

The Guangdong/Dongguan local government provides a free land of about 0.667km² for CSNS. 0.267km² is planned for the phase-l construction.

IHEP will set up a new branch at Dongguan for CSNS construction. Artificial view of the campus of the site.

2011.8.18中国散裂中子源装置地A点拍摄

Aug 2011: land is prepared

Land preparation (upper: before; bottom: now)

the 70m-high slop protection laid on the hill have almost completed.

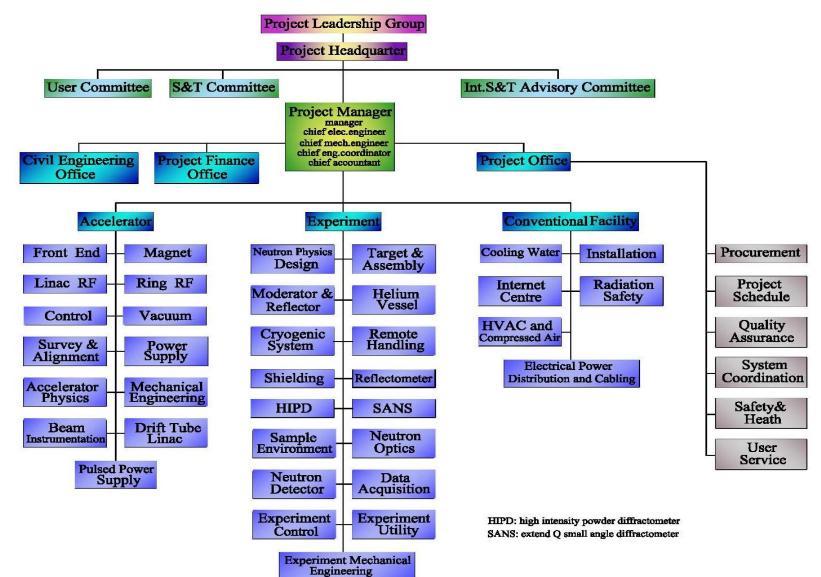
Two dedicated high-ways are under construction.

散裂中子源 China Spallation Neutron Source

5 Apartment buildings with 230 rooms is under construction at Songshan Lake, and some other apartment buildings (430rooms) will be built soon.

Budget

- Baseline--- the largest big-science project in China
 - 1.7B CNY from central government for project construction
 - 0.5B CNY and land from Guangdong/Dongguan local government for additional supports
- R&D
 - 35M CNY (received) from CAS for R&D 1
 - 40M CNY (received) from Dongguan government for R&D 2 (included in 0.5B CNY additional supports)
- Operation
 - 0.14B CYN per year from central government

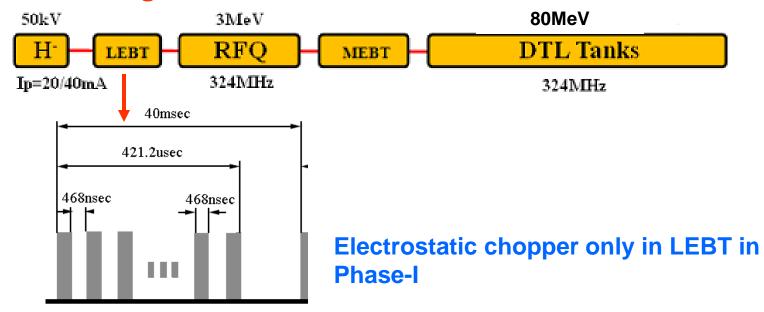


Personnel Needs

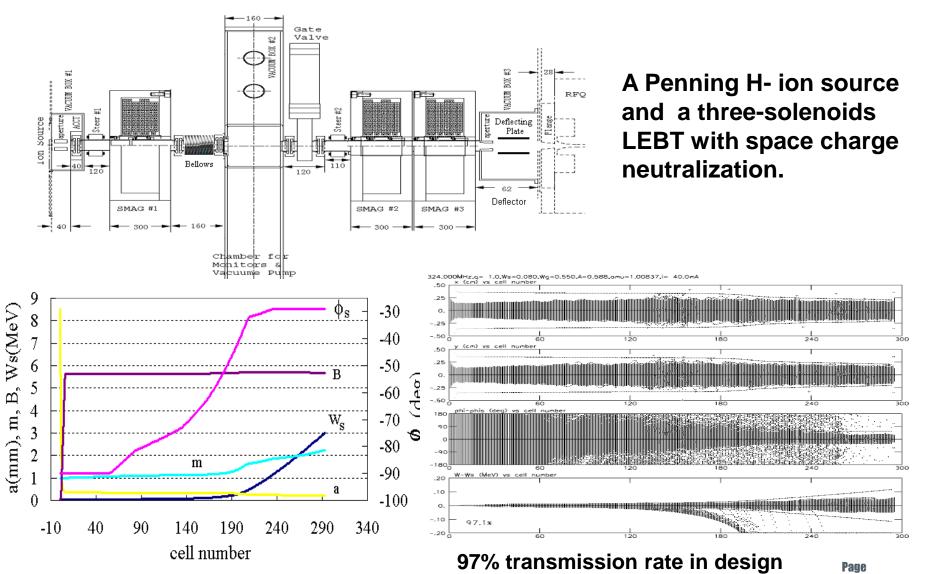
No.	Division	Peak (FTE)	Present (FTE)
1	Accelerator	160	110
2	Experiment	136	49
3	Conventional Facility	95	11
Total		391	141

Organization Chart

The Second International Accelerator Technology Advisory Committee Review Meeting was held in January, 2010.


The 3rd ATAC is going to be held in 22-24, Sept. 2011

Accelerator Design


• Linac design :

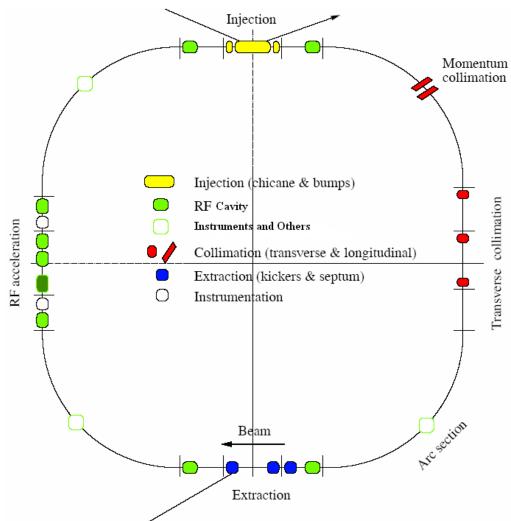
	Ion Source	RFQ	DTL
Input Energy (MeV)		0.05	3.0
Output Energy(MeV)	0.05	3.0	80
Pulse Current (mA)	20/40	20/40	15/30
RF frequency (MHz)		324	324
Chop rate (%)		50	50
Duty factor (%)	1.3	1.05	1.05
Repetition rate (Hz)	25	25	25

Front-end design

DTL design

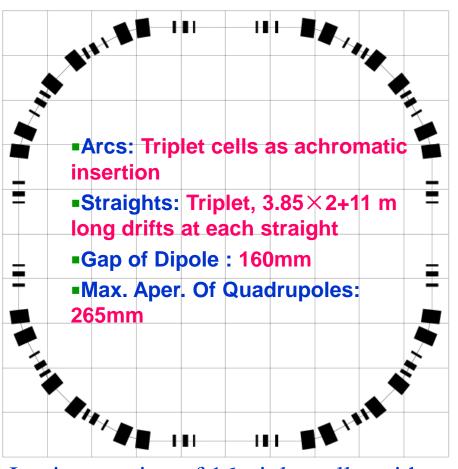
Tank parameters of CSNS DTL						
Tank number	1	2	3	4		
Output energy (MeV)	21.67	41.41	61.07	80.1		
Length (m)	8.51	8.56	8.78	8.8		
Number of cell	64	37	30	26		
RF driving power (MW)	1.35	1.32	1.32	1.34		
Total RF power (MW)	1.91	1.92	1.92	1.93		
Accelerating field (MV/m)	2.86	2.96	2.96	3.0		
Synchronous phase (degree)	-35 to -25	-25	-25	-25		

- The total RF power with a 30mA beam in a tank is about 2MW. Each tank is fed by a 2.5MW klystron.
- FFDD lattice is used.



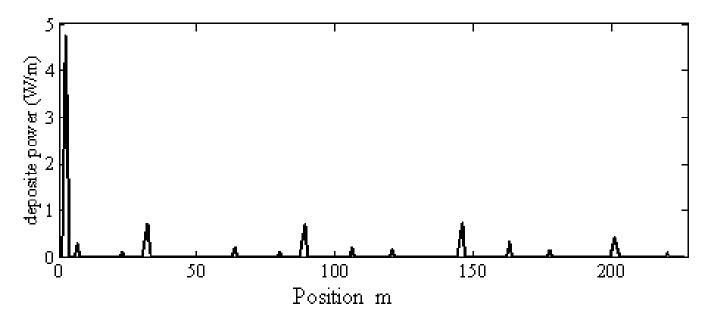
гачб

RCS Design


Lattice design-4-fold Structure

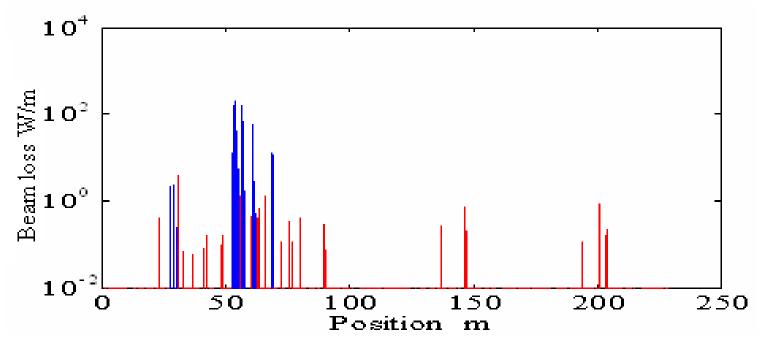
- Separated-function design
- The collimation can be performed in a separate straight section.
- The superperiodicity of 4 is better for reducing the impact of low-order structure resonance than superperiodicity of 3.

RCS major parameters

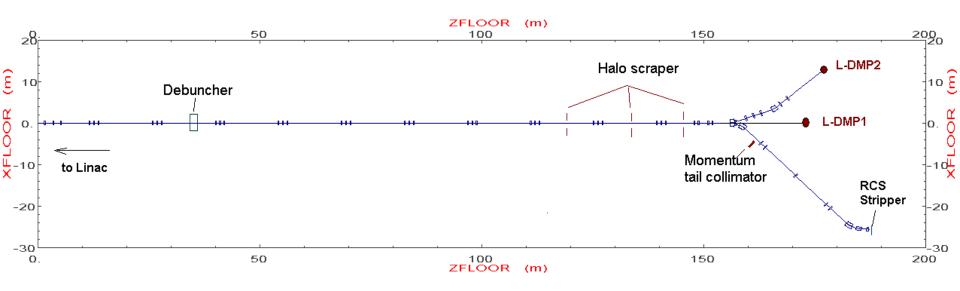


Lattice consists of 16 triplet cells, with a gap in the middle of arc and dispersion free straight section .

Circumference (m)	227.92
Superperiod	4
Number of dipoles/quadrupoles	24/48
Number of long drift	12
Total Length of long drift (m)	75
Betatron tunes (h/v)	4.82/4.80
Chromaticity (h/v)	-4.3/-8.2
Momentum compaction	0.041
RF harmonics	2
RF Freq. (MHz)	1.0241~2.44
RF Voltage (kV)	165
Trans. acceptance (πμm.rad)	540

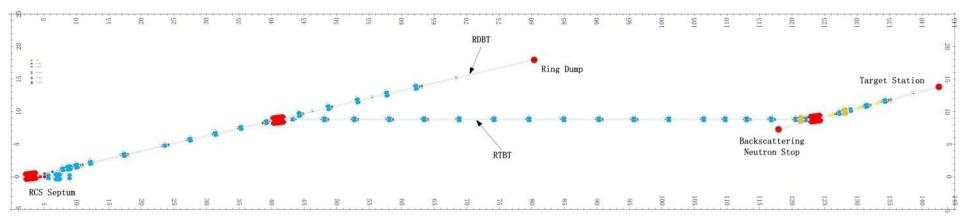

Beam loss without collimation

In case of no beam collimation, the total beam loss is small, but the maximum local beam loss is over 5W/m.


Beam loss with collimation

Beam loss distribution in the RCS with transverse and momentum beam collimation, total beam loss is about 5%, and the collimation efficiency is more than 96%

LRBT layout


85m reserved for upgrade linac energy to 250MeV

Superconducting spoke cavity will be used from 80 to 250 MeV linac

RTBT Layout

W.Liu: THPS041

•RTBT transport extracted beam from RCS to target.

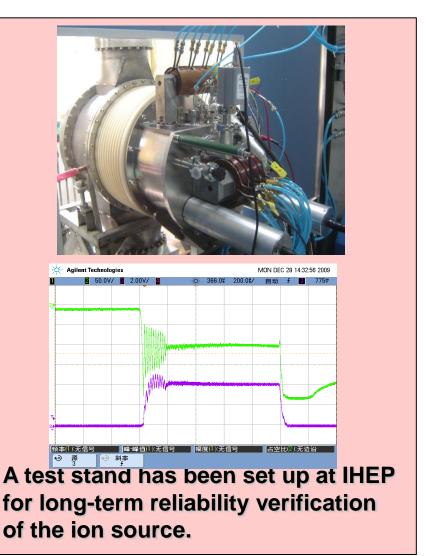
•Matching and tailoring the beam to get the required profile and beam density in the target by means of two octupole magnets.

- Beam loss control: collimation at RTBT for protection of the target and shielding of back scattering neutrons.
- •A beam dump for beam commissioning.
- •Proton beam window: separating accelerator vacuum from outside.
- Back scattering neutron beam line is design for future applications.

Key Technology R&D

Key Technology Identification

- 1. H- ion source (20mA, 0.2π mm-mrad, long lifetime)
- 2. Ion source control system (EMC)
- **3.** Fast chopper in LEBT(fast rise time and space-charge neutralization)
- 4. DTL tank (high RF freq., small DT with EMQ, electroform)
- 5. Digital linac LLRF (1%, long flattop)
- 6. HV pulsed power supply for RF power source (innovative)
- 7. Modulator and Crowbar (high V and quick protection)
- 8. AC dipole magnet (Big gap, AC, eddy current)
- 9. AC quadrupole magnet (Big bore radius, AC, eddy current)
- **10.** Magnet measurement (AC, curved)
- 11. Power supplies for D and Q magnets (AC+DC, high power, High tracking accuracy)
- 12. Ceramic chamber and its RF cage (Ceramic, Joining, crack)


Key Technology Identification

- 13. Ferrite-loaded RF cavity (High-power dissipation,Cooling plate:0.05mm)
- 14. Biased current source for RF cavity (High stabl: 0.2%, ramp:200A/ms)
- 15. **RF power supply** (wide swing:1-2.4MHz, high duty:50%, high power:500kW)
- **16.** Digitalized LLRF (Varying f + Varying V+varying Φ s, heavy beam loading,FB/FF)
- **17.** Inj/Ext magnets (Good-field region, vibration, quick rise time)
- 19. In/Ext power supplies (High current:18kA, Prog. Slop, quick rise time:250nS))
- **20.** Beam diagnostics (BLM, BPM, WS)
- 21. Control (Digitalized power-supply controller, waveform collector for power supply, timing system, XAL)
- 22. Collimator

H- ion source: four H- ion source bodies were fabricated at IHEP and test at ISIS with a satisfactory results (55mA pulse current).

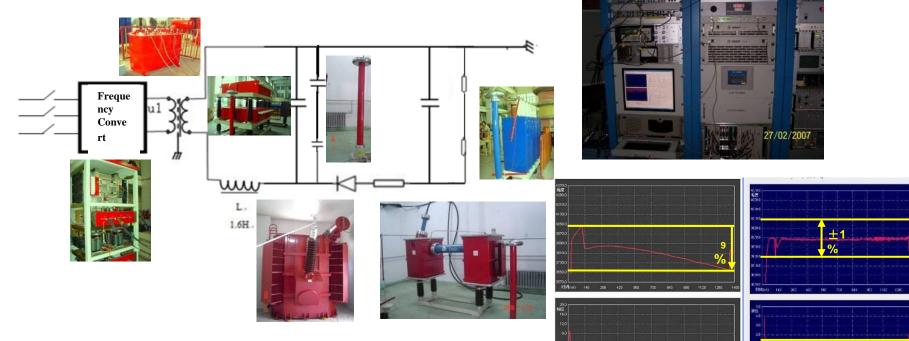
• RFQ technology has been developed in an ADS program

A 3.5MeV RFQ has been commissioned at IHEP with the kind support of the RF power system from CERN.

<u>fek</u>			🕒 Stop)	M Pos:	710.0,us	CURSOR
ł				-			类型
E					••••••		电压
							信源 CH2
							增量 426mV
							光标1 -9.60mV
2+000						Are:	光标2 416mV
CHT	80.0mV	CH2	80.0mV	M 250,us		CH1 20	Ø8m∀3 Z3

46mA output beam at 7% duty factor, transmission rate>93%. Now to 15% duty, CW in future.

- DTL tank: electroform technologies are developed for tank copper liner.
- Electroformed coil, the same as J-PARC.



The first module of the first tank has been fabricated for field tuning.

Sakae coil and quadrupole at rotating coil measurement

Linac RF power system

AC resonant HV pulsed power supply for klystron was proposed and devised.

FPGA based digital LLRF control system with effective control of ph & ampl.

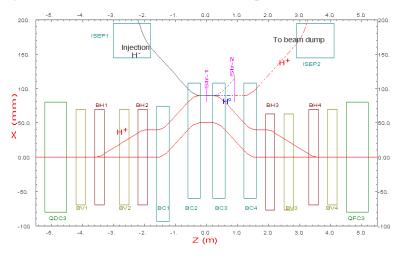
+1

• Dipole and quadrupole are prototyped. AC measurement system developed for dipole, with a good preliminary result.

• Power supply for dipole magnet

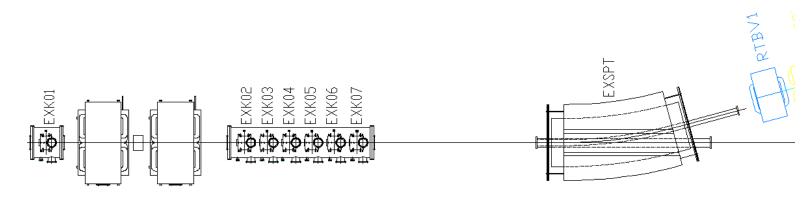
White resonant circuit was chosen as the power supply for the magnets with a large conductivity. It is composed of DC (1260A)+ AC(900A) sources, choke, and capacitor bank.

One of the key technology is high tracking accuracy. With the harmonics injection technology, magnet tracking accuracy meets design demand.



- Complete RF system high power test
 - Sweeping range: 1.02~2.44MHz
 - Repetition rate: 25Hz
 - Gap voltage: according to the curve of RF voltage provided by the physicist
 - The maximum gap volts can reach to 12kV.
- Through 24 hours operation continuously, cavity and all devices works well.

Injection bumper magnet and power supply are prototyped


A pulsed power supply with 18kA output current in maximum during injection time of 500µs connected with the bump magnet for the magnet measurement.

Extraction fast kicker and its pulse power supply.

The pulse power supply uses Blumlein type pulse forming network to get a short pulse with a current of 5840A and a flattop of better than \pm 1.5%

Summary

- CSNS is the largest big-science facility in China
- The CSNS accelerator design can meet the project requirement.
- Optimization of the design has been done for low beam loss and low cost.
- Most of the key technology have been developed for low technology risk.
- CSNS will start construction in the end of Sept. 2011 and complete in 2018.

Thank you very much for your attention