Paper | Title | Page |
---|---|---|
WEPKN002 | Tango Control System Management Tool | 713 |
|
||
Tango is an object oriented control system toolkit based on CORBA initially developed at the ESRF. It is now also developed and used by Soleil, Elettra, Alba, Desy, MAX Lab, FRM II and some other labs. Tango concept is a full distributed control system. That means that several processes (called servers) are running on many different hosts. Each server manages one or several Tango classes. Each class could have one or several instances. This poster will show existing tools to configure, survey and manage a very large number of Tango components. | ||
Poster WEPKN002 [1.982 MB] | ||
WEPKN003 | Distributed Fast Acquisitions System for Multi Detector Experiments | 717 |
|
||
An increasing number of SOLEIL beamlines need to use in parallel several detection techniques, which could involve 2D area detectors, 1D fluorescence analyzers, etc. For such experiments, we have implemented Distributed Fast Acquisition Systems for Multi Detectors. Data from each Detector are collected by independent software applications (in our case Tango Devices), assuming all acquisitions are triggered by a unique Master clock. Then, each detector software device streams its own data on a common disk space, known as the spool. Each detector data are stored in independent NeXus files, with the help of a dedicated high performance NeXus streaming C++ library (called NeXus4Tango). A dedicated asynchronous process, known as the DataMerger, monitors the spool, and gathers all these individual temporary NeXus files into the final experiment NeXus file stored in SOLEIL common Storage System. Metadata information describing context and environment are also added in the final file, thanks to another process (the DataRecorder device). This software architecture proved to be very modular in terms of number and type of detectors while making life of users easier, all data being stored in a unique file at the end of the acquisition. The status of deployment and operation of this "Distributed Fast Acquisitions system for multi detector experiments" will be presented, with the examples of QuickExafs acquisitions on the SAMBA beamline and QuickSRCD acquisitions on DISCO. In particular, the complex case of the future NANOSCOPIUM beamline will be developed. | ||
Poster WEPKN003 [0.671 MB] | ||
WEPKN005 | Experiences in Messaging Middleware for High-Level Control Applications | 720 |
|
||
Funding: This project is funded by the US Department of Energy, Office of High Energy Physics under the contract #DE-FG02-08ER85043. Existing high-level applications in accelerator control and modeling systems leverage many different languages, tools and frameworks that do not interoperate with one another. As a result, the community has moved toward the proven Service-Oriented Architecture approach to address the interoperability challenges among heterogeneous high-level application modules. This paper presents our experiences in developing a demonstrative high-level application environment using emerging messaging middleware standards. In particular, we utilized new features such as pvData, in the EPICS v4 and other emerging standards such as Data Distribution Service (DDS) and Extensible Type Interface by the Object Management Group. Our work on developing the demonstrative environment focuses on documenting the procedures to develop high-level accelerator control applications using the aforementioned technologies. Examples of such applications include presentation panel clients based on Control System Studio (CSS), Model-Independent plug-in for CSS, and data producing middle-layer applications such as model/data servers. Finally, we will show how these technologies enable developers to package various control subsystems and activities into "services" with well-defined "interfaces" and make leveraging heterogeneous high-level applications via flexible composition possible. |
||
Poster WEPKN005 [2.723 MB] | ||
WEPKN006 | Running a Reliable Messaging Infrastructure for CERN's Control System | 724 |
|
||
The current middleware for CERN's accelerator controls system is based on two implementations: corba-based Controls MiddleWare (CMW) and Java Messaging Service [JMS]. The JMS service is realized using the open source messaging product ActiveMQ and had became an increasing vital part of beam operations as data need to be transported reliably for various areas such as the beam protection system, post mortem analysis, beam commissioning or the alarm system. The current JMS service is made of 17 brokers running either in clusters or as single nodes. The main service is deployed as a two node cluster providing failover and load balancing capabilities for high availability. Non-critical applications running on virtual machines or desktop machines read data via a third broker to decouple the load from the operational main cluster. This scenario was introduced last year and the statistics showed an uptime of 99.998% and an average data serving rate of 1.6GB /min represented by around 150 messages/sec. Deploying, running, maintaining and protecting such messaging infrastructure is not trivial and includes setting up of careful monitoring and failure pre-recognition. Naturally, lessons have been learnt and their outcome is very important for the current and future operation of such service. | ||
Poster WEPKN006 [0.877 MB] | ||
WEPKN007 | A LEGO Paradigm for Virtual Accelerator Concept | 728 |
|
||
The paper considers basic features of a Virtual Accelerator concept based on LEGO paradigm. This concept involves three types of components: different mathematical models for accelerator design problems, integrated beam simulation packages (i.e. COSY, MAD, OptiM and others), and a special class of virtual feedback instruments similar to real control systems (EPICS). All of these components should interoperate for more complete analysis of control systems and increased fault tolerance. The Virtual Accelerator is an information and computing environment which provides a framework for analysis based on these components that can be combined in different ways. Corresponding distributed computing services establish interaction between mathematical models and low level control system. The general idea of the software implementation is based on the Service-Oriented Architecture (SOA) that allows using cloud computing technology and enables remote access to the information and computing resources. The Virtual Accelerator allows a designer to combine powerful instruments for modeling beam dynamics in a friendly to use way including both self-developed and well-known packages. In the scope of this concept the following is also proposed: the control system identification, analysis and result verification, visualization as well as virtual feedback for beam line operation. The architecture of the Virtual Accelerator system itself and results of beam dynamics studies are presented. | ||
Poster WEPKN007 [0.969 MB] | ||
WEPKN010 | European XFEL Phase Shifter: PC-based Control System | 731 |
|
||
Funding: Work partially supported by the Spanish Ministry of Science and Innovation under SEI Resolution on 17-September-2009 The Accelerator Technology Unit at CIEMAT is in charge of part of the Spanish contribution to the European X-Ray Free-Electron Laser (EXFEL). This paper presents the control system of the Phase Shifter (PS), a beam phase corrector magnet that will be installed in the intersections of the SASE undulator system. Beckhoff has been chosen by EXFEL as its main supplier for the industrial control systems. Beckhoff Twincat PLC architecture is a PC-based control technology built over EtherCAT, a real-time Ethernet fieldbus. The PS is operated with a stepper motor, its position is monitored by an incremental encoder, and it is controlled by a Twincat-PLC program using the TcMC2 library, an implementation of the PLCopen Motion Control specification. A GUI has been developed in LabVIEW instead of using Beckhoff visualization tool. The control system for the first and second prototype devices has been developed in-house using COTS hardware and software. The specifications request a repeatability of ±50μm in bidirectional movements and ±10μm in unidirectional movements. The second prototype can reach speeds up to 15 mm/s. |
||
Poster WEPKN010 [3.077 MB] | ||
WEPKN014 | NSLS-II Filling Pattern Measurement | 735 |
|
||
Multi-bunch injection will be deployed at NSLS-II. High bandwidth diagnostic monitors with high-speed digitizers are used to measure bunch-by-bunch charge variation. The requirements of filling pattern measurement and layout of beam monitors are described. The evaluation results of commercial fast digitizer Agilent Acqiris and high bandwidth detector Bergoz FCT are presented. | ||
Poster WEPKN014 [0.313 MB] | ||
WEPKN015 | A New Helmholtz Coil Permanent Magnet Measurement System* | 738 |
|
||
Funding: Work supported by U.S. Department of Energy Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. A new Helmholtz Coil magnet measurement system has been developed at the Advanced Phone Source (APS) to characterize and sort the insertion device permanent magnets. The system uses the latest state-of-the-art field programmable gate array (FPGA) technology to compensate the speed variations of the magnet motion. Initial results demonstrate that the system achieves a measurement precision better than 0.001 ampere-meters squared (A·m2) in a permanent magnet moment measurement of 32 A·m2, probably the world's best precision of its kind. |
||
Poster WEPKN015 [0.710 MB] | ||
WEPKN018 | NSLS-II Vacuum Control for Chamber Acceptance | 742 |
|
||
Funding: Work supported by U.S. Department of Energy The National Synchrotron Light Source II (NSLS-II) uses extruded aluminium chambers as an integral part of the vacuum system. Prior to installation in the Storage Ring all dipole and multipole chamber assemblies must be tested to ensure vacuum integrity. A significant part of the chamber test requires a full bakeout of the assembly, as well as control and monitoring of the titanium sublimation pumps (TSP), non-evaporable getter pumps (NEG) and ion pumps (IP). Data that will be acquired by the system during bakeouts includes system temperature, vacuum pressure, residual gas analyzer scans, ion pump current, TSP operation and NEG activation. This data will be used as part of the acceptance process of the chambers prior to the installation in the storage ring tunnel. This paper presents the design and implementation of the vacuum bakeout control, as well as related vacuum control issues. |
||
Poster WEPKN018 [1.174 MB] | ||
WEPKN019 | A Programmable Logic Controller-Based System for the Recirculation of Liquid C6F14 in the ALICE High Momentum Particle Identification Detector at the Large Hadron Collider | 745 |
|
||
We present the design and the implementation of the Control System (CS) for the recirculation of liquid C6F14 (Perfluorohexane) in the High Momentum Particle Identification Detector (HMPID). The HMPID is a sub-detector of the ALICE experiment at the CERN Large Hadron Collider (LHC) and it uses liquid C6F14 as Cherenkov radiator medium in 21 quartz trays for the measurement of the velocity of charged particles. The primary task of the Liquid Circulation System (LCS) is to ensure the highest transparency of C6F14 to ultraviolet light by re-circulating the liquid through a set of special filters. In order to provide safe long term operation a PLC-based CS has been implemented. The CS supports both automatic and manual operating modes, remotely or locally. The adopted Finite State Machine approach minimizes the possible operator errors and provides a hierarchical control structure allowing the operation and monitoring of a single radiator tray. The LCS is protected against anomalous working conditions by both active and passive systems. The active ones are ensured via the control software running in the PLC whereas the human interface and data archiving are provided via PVSS, the SCADA framework which integrates the full detector control. The LCS under CS control has been fully commissioned and proved to meet all requirements, thus enabling HMPID to successfully collect the data from the first LHC operation.. | ||
Poster WEPKN019 [1.270 MB] | ||
WEPKN020 | TANGO Integration of a SIMATIC WinCC Open Architecture SCADA System at ANKA | 749 |
|
||
The WinCC OA supervisory control and data acquisition (SCADA) system provides at the ANKA synchrotron facility a powerful and very scalable tool to manage the enormous variety of technical equipment relevant for house keeping and beamline operation. Crucial to the applicability of a SCADA system for the ANKA synchrotron are the provided options to integrate it into other control concepts even if they are working e.g. on different time scales, managing concepts, and control standards. Especially these latter aspects result into different approaches for controlling concepts for technical services, storage ring, and beamlines. The beamline control at ANKA is mainly based on TANGO and SPEC, which has been expanded by TANGO server capabilities. This approach implies the essential need to provide a stable and fast link, that does not increase the dead time of a measurement, to the slower WinCC OA SCADA system. The open architecture of WinCC OA offers a smooth integration in both directions and therefore gives options to combine potential advantages, e.g. native hardware drivers or convenient graphical skills. The implemented solution will be presented and discussed at selected examples. | ||
Poster WEPKN020 [0.378 MB] | ||
WEPKN024 | UNICOS CPC New Domains of Application: Vacuum and Cooling & Ventilation | 752 |
|
||
The UNICOS (UNified Industrial Control System) framework, and concretely the CPC package, has been extensively used in the domain of continuous processes (e.g. cryogenics, gas flows, ) and also others specific to the LHC machine as the collimators environmental measurements interlock system. The application of the UNICOS-CPC to other kind of processes: vacuum and the cooling and ventilation cases are depicted here. One of the major challenges was to figure out whether the model and devices created so far were also adapted for other types of processes (e.g Vacuum). To illustrate this challenge two domain use cases will be shown: ISOLDE vacuum control system and the STP18 (cooling & ventilation) control system. Both scenarios will be illustrated emphasizing the adaptability of the UNICOS CPC package to create those applications and highlighting the discovered needed features to include in the future UNICOS CPC package. This paper will also introduce the mechanisms used to optimize the commissioning time, the so-called virtual commissioning. In most of the cases, either the process is not yet accessible or the process is critical and its availability is then reduced, therefore a model of the process is used to offline validate the designed control system. | ||
Poster WEPKN024 [0.230 MB] | ||
WEPKN025 | Supervision Application for the New Power Supply of the CERN PS (POPS) | 756 |
|
||
The power supply system for the magnets of the CERN PS has been recently upgraded to a new system called POPS (POwer for PS). The old mechanical machine has been replaced by a system based on capacitors. The equipment as well as the low level controls have been provided by an external company (CONVERTEAM). The supervision application has been developed at CERN reusing the technologies and tools used for the LHC Accelerator and Experiments (UNICOS and JCOP frameworks, PVSS SCADA tool). The paper describes the full architecture of the control application, and the challenges faced for the integration with an outsourced system. The benefits of reusing the CERN industrial control frameworks and the required adaptations will be discussed. Finally, the initial operational experience will be presented. | ||
Poster WEPKN025 [13.149 MB] | ||
WEPKN026 | The ELBE Control System – 10 Years of Experience with Commercial Control, SCADA and DAQ Environments | 759 |
|
||
The electron accelerator facility ELBE is the central experimental site of the Helmholtz-Zentrum Dresden-Rossendorf, Germany. Experiments with Bremsstrahlung started in 2001 and since that, through a series of expansions and modifications, ELBE has evolved to a 24/7 user facility running a total of seven secondary sources including two IR FELs. As its control system, ELBE uses WinCC on top of a networked PLC architecture. For data acquisition with high temporal resolution, PXI and PC based systems are in use, applying National Instruments hardware and LabVIEW application software. Machine protection systems are based on in-house built digital and analogue hardware. An overview of the system is given, along with an experience report on maintenance, reliability and efforts to keep track with ongoing IT, OS and security developments. Limits of application and new demands imposed by the forthcoming facility upgrade as a centre for high intensity beams (in conjunction with TW/PW femtosecond lasers) are discussed. | ||
Poster WEPKN026 [0.102 MB] | ||
WEPKN027 | The Performance Test of F3RP61 and Its Applications in CSNS Experimental Control System | 763 |
|
||
F3RP61 is an embedded PLC developed by Yokogawa, Japan. It is based on PowerPC 8347 platform. Linux and EPICS can run on it. We do some tests on this device, including CPU performance, network performance, CA access time and scan time stability of EPICS. We also compare E3RP61 with MVME5100, which is most used IOC in BEPCII. After the tests and comparison, the performance and ability of F3RP61 is clear. It can be used in Experiment Control System of CSNS (China Spallation Neutron Source) as communication nodes between front control layer and Epics layer. And in some cases, F3RP61 also has the ability to exert more functions such as control tasks. | ||
Poster WEPKN027 [0.200 MB] | ||