
*thomas.spangenberg@kit.edu

TANGO INTEGRATION OF A SIMATIC WINCC OPEN ARCHITECTURE
SCADA SYSTEM AT ANKA

T. Spangenberg*, K. Cerff, W. Mexner, KIT, Karlsruhe, Germany
Volker Kaiser, Softwareschneiderei GmbH, Karlsruhe, Germany

Abstract
The WinCC OA [1] supervisory control and data

acquisition (SCADA) system (previous PVSS II) provides
at the ANKA synchrotron facility a powerful and very
scalable tool to manage the enormous variety of technical
equipment relevant for house keeping, beamline, and
machine operation. Crucial to the applicability of a
SCADA system for the ANKA synchrotron are the
provided options to integrate it into other control concepts
even if they are working e.g. on different time scales,
managing concepts, and control standards.

Especially these latter aspects result into different
approaches for controlling concepts for technical services,
storage ring, and beamlines.

The beamline control at ANKA was originally fully
based on SPEC and is currently moved to TANGO [2]
and SPEC [3] which has been fully integrated by
expanding by TANGO server capabilities. This approach
implies the essential need to provide a stable and fast link,
which does not increase the dead time of a measurement
to the slower WinCC OA SCADA system. The open
architecture of WinCC OA offers a smooth integration in
both directions and therefore gives options to combine
potential advantages, e.g. native hardware drivers or
convenient graphical skills.

The implemented solution will be presented and
discussed at selected examples.

CHALLENGES
An important factor for the scientific excellence of a

synchrotron is based on its beamlines and their rapid and
precise measurement instrumentation and data collection.
Obviously a huge number of specialised devices is to be
managed. TANGO turned out to be an appropriate tool
regarding the speed and the required flexibility for the
experimental instrumentation. At the same time and time
scale essential environmental information needs to be
provided by the SCADA system.

The initially much slower SCADA provides at smallest
engineering cost level the required long term stability and
scalability and guarantees the robust control of PLCs and
any house keeping equipment. But the different event
execution times of WinCC OA in respect to TANGO
requires an adoption of the data processing.

Figure 1: Comparison chart of basic features of WinCC
OA and Tango based beamline control. Key benefits of
the SCADA and TANGO used at ANKA are marked blue.

Both control systems show a certain analogy but at the
same time different fundamental approaches. WinCC OA
is set up on central event manager(s) which guarantee the
consistency of the data, generate events, derived process
values, and a bunch of other management functions. In
contrast TANGO offers a clear client-server-concept. It
results into a flexible and fast control structure which
doesn’t stand out ab inito as a clear interaction scheme or
presentation concept.

Due to the fact that none of both systems may
substitute the advantages of the other one a seamless
cooperation needs to be sought.

SOLUTION
Both systems set up on TCP/IP communication and

offer a complete API for Windows and Linux. The
manager/driver concept of WinCC OA is comparable to
TANGO server/client pair. Hereon set up the approach to
combine manager – server and driver – client pairs.

At ANKA Linux was chosen as the main platform and
all mangers have been designed to this environment. But
there are no principle limitations to that operating system.

Proceedings of ICALEPCS2011, Grenoble, France WEPKN020

Integrating industrial/commercial devices 749 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

The WinCC OA driver is in relation to TANGO a client
which connects by multiple standard TANGO proxies to
the servers. Polling and event based data point
connections may be realised by the driver. The productive
version at ANKA is based on polling. Some minor data
type adaptions are done on driver level.

The TANGO server implementation for WinCC OA
permits a straight forward read and write access to the
WinCC OA data set. Supported data types of the current
version are, integer, boolean, double, and string.

A WinCC OA data point and its addressed element are
well described by its name which is a unique string and it
is used as an index for the cache. Type and name are used
to connect to the WinCC OA event manager and the
requested value will be cached. Any change of it will
update the cache.

Any update of a value is done in the comparable slow
WinCC OA time scale. But a request to a successfully
connected data point is handled by the TANGO server
interface and is defined by the speed of C++ map. The
response time of these maps is considerable shorter than
1ms and scales logarithmically to the size of these
objects. In case of a higher workload the application is
free scalable via the number of the server applications.
Additionally the load to the WinCC OA event manager by
multiple access of the same value from different clients is
reduced by a cache mechanism, which effectively
prevents the single threaded WinCC OA event manager to
be blocked by an excessive number of client requests.

The write access to WinCC OA is indirectly feeding an
input queue to the event manager. Again, timing issues
needs to be considered. Requests from TANGO clients are
queued and handled sequential with WinCC OA manager
speed.

Figure 2: Schematic overview of the WinCC OA /
TANGO interaction for beamline operation. The intrinsic
time scale difference is managed by the developed
WinCC OA manager and driver.

TECHNICAL CHALLENGES
Both systems are offering a complete C++ API which

compiles each separately with gcc 4.x compilers. But the
standard makefiles claim different compiler options and
libraries. Additionally the WinCC OA is limited to 32bit.

Due to incompatible header requirements a direct
exchange of data types or classes doesn’t work. Dedicated
data exchange classes were developed which are
connecting the WinCC OA and TANGO part by a
bidirectional data queue and granting the thread safe
access to the exchanged data. There are different
approaches for the TANGO server and for the TANGO
client.

A major problem of combining a TANGO server and a
WinCC OA manager is that both are claiming to define
the int main() originally. Even if the source is available
and the name conflict might be resolved it turned out that
at first the TANGO server needs to start up and the
WinCC OA manager template part is possible to run in a
separate thread with a renamed and modified main()
function. As a third argument the address of the data
exchange is passed for a separately compiled library
which contains the complete WinCC OA manager.

For compatibility reasons of the by POGO generated
TANGO server the WinCC OA part parameters had to be
defined as TANGO server property and are forwarded to
the WinCC OA thread. To handle the TANGO server as a
‘normal’ WinCC OA manager, it was wrapped by a script
which overcomes the difficulty of setting natively
unknown command line TANGO parameters to a WinCC
OA application by its management tools.

The combination of TANGO clients and WinCC OA
drivers shows smaller difficulties. The program was
developed as a standard WinCC OA driver project. The
TANGO client properties are provided by the standard
TANGO class and operated in an own thread. The same
queue classes of the manager are used to create a thread
safe data flow. Due to its original WinCC-OA nature the
driver is also managed by the WinCC OA management.

ACTUAL STATE
The server (manager) as well as the client (driver) are

in production state and hosted on a VMware ESX server
as a small 32bit SuSE Linux 1GB RAM virtual machine.

The server gives a response of less than 1ms request to
a request of a previously ‘connected’ value. Scalars of the
type bool, int, double, and string are implemented in the
current version. Other types will be implemented on
request.

The client operates as a native WinCC OA TANGO
driver and permits a standard WinCC OA data integration
with the only constraint that it is currently not possible to
browse the existing tango attributes of a device server.

WEPKN020 Proceedings of ICALEPCS2011, Grenoble, France

750C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Integrating industrial/commercial devices

CONCLUSION
The combination of the SCADA system WinCC OA

and TANGO is fruitful for both sides. The TANGO world
gains a well-engineered alarming and logging and a
bridge to industrial protocols. Many industrial devices are
now available to TANGO without any extra driver
development. Due to caching any WinCC OA data can be
accessed without any time loss in the timescale of the
typical TANGO measurement processes. On the other
side WinCC OA application range with its easy and
straight forward to develop GUI is significantly extended
for scientific applications by the huge number of already
developed TANGO device servers and it’s attributes and
simple commands. And last but not least the WinCC OA
TANGO driver allows automation engineers a seamless
access to TANGO servers without special TANGO
knowledge and general software development skills. The
load of GUI development for standard automation tasks is
shifted from software developers to engineers and
therefore reduces the overall engineering costs and frees
resources for more complex software tasks.

The solution is in productive state at ANKA.

REFERENCES
[1] http://www.etm.at
[2] http://www.tango-controls.org
[3] http://www.certif.com

Proceedings of ICALEPCS2011, Grenoble, France WEPKN020

Integrating industrial/commercial devices 751 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

