
© 2011 Tech-X Corporation

Work partially supported by Tech-X Corpoation and by the Office of High-
Energy Physics, Office of Science, U.S. Department of Energy under
Contracts #DE-FG02-08ER85043 and #DE-SC0000842

The 13th International Conference on Accelerator and Large
Experimental Physics Control Systems, October, 2011

Experiences in Messaging Middleware for
High-Level Control Applications

Nanbor Wang*, Svetlana Shasharina, James Matykiewicz, and Rooparani Pundaleeka

Tech-X Corporation
*nanbor@txcorp.com

 Existing high-level applications in accelerator control and
modeling systems leverage many different languages, tools and
frameworks that do not interoperate with one another. As a result,
the accelerator control community is moving toward the proven
Service-Oriented Architecture (SOA) approach to address the
interoperability challenges among heterogeneous high-level
application modules. Such SOA approach enables developers to
package various control subsystems and activities into “services”
with well-defined “interfaces” and make leveraging heterogeneous
high-level applications via flexible composition possible. Examples
of such applications include presentation panel clients based on
Control System Studio (CSS) and middle-layer applications such
as model/data servers.

	
 This	
 poster	
 presents	
 our	
 experiences	
 in	
 developing	
 a	
 demonstra5ve	

high-­‐level	
 applica5on	
 environment	
 using	
 emerging	
 messaging	

middleware	
 standards.	
 	
 In	
 par5cular,	
 we	
 u5lize	
 new	
 features	
 such	
 as	
 in	

EPICS	
 v4	
 and	
 other	
 emerging	
 standards	
 such	
 as	
 Data	
 Distribu5on	
 Service	

(DDS)	
 and	
 Extensible	
 Type	
 Interface	
 by	
 the	
 Object	
 Management	
 Group.	

We	
 briefly	
 review	
 examples	
 we	
 developed	
 previously.	
 We	
 then	
 present	

our	
 current	
 effort	
 in	
 integra5ng	
 DDS	
 into	
 such	
 a	
 SOA	
 environment	
 for	

control	
 system.	
 Specifically,	
 we	
 illustrate	
 how	
 we	
 are	
 integra5ng	
 DDS	

into	
 CSS	
 and	
 showcase	
 our	
 other	
 DDS	
 efforts.	

Abstract

Motivations

Middle-Layer Server Examples

•  We extended the open source TouchStone performance test
suite to work with most DDS implementations

•  The test suite helps developers to explore different ways to
configure the overall system QoS policies using different
operational scenarios before actually developing the
applications

DDS Performance
Test Suite

We developed an example middle-layer server on top of two
different DDS implementations:
•  Web Browser runs UI
•  Web Server connect to the actual Optim Server using pub/sub

protocols (DDS and EPICS-DDS)
•  Optim Server runs MAD-X or UAL

Data-centric publish-subscribe middleware provides more flexible
coupling between data information producers and consumers.
Furthermore, DDS has built-in Quality-of-Service policies that are
crucial to control systems.

Why Data Distribution Service?

•  Deadline: Establishes contract regarding rate at which periodic
data is refreshed

•  Latency: Establishes guidelines for acceptable end-to-end
delay

•  Time-based Filter: Mediates exchanges between slow
consumers and fast producers

•  Resource Limit: Controls resource utilization by DDS entities
•  Reliability: Controls message delivery QoS (Best-effort/reliable)
•  History: Control how many messages are kept by the

middleware (keep last n/keep all)
•  Durability: Control the lifecycle of data (volatile, transient,

persistent)

Integrating DDS into CSS

Motivation: The Intensity Frontier experiment employs
both EPICS and DDS in the instrument. It is necessary
to monitor information and send control signals over
both protocols.

•  The easiest way for Python code to interact with DDS data
space is to wrap up C/C++ generated code with SWIG/
Boost.python
•  Type-specific wrappers
•  Extra-steps necessary to generate wrappers
•  Need to regenerate wrappers when topic structures change
•  Not compatible to Python’s dynamic/interpretive language

nature

Summary and Future Work

•  With the new pyDDS library, a Python application:
•  Dynamically generate type-specific objects right inside

Python application using services provided by pyDDS
•  Interact with DDS services directly via pyDDS
•  Does not require extra tools or separate steps to generate

wrappings for every topic structure
•  Take advantabe of Python’s dynamic language features and

fit into its development flow

A SOA with dual messaging buses have shown to be an effective
approach to address the scalability and interoperability challenges
of modern large-scale accelerator control systems. We are
developing tools and libraries to simplify the adoption of DDS. We
plan to continue to harden these tools and enhance them to
support more dynamic features such as run-time type resolution
and the emerging extensible type standard to make them more
robust and adaptable to new application needs.

Python DDS (pyDDS)

•  Client-­‐Server/RPC-­‐styled/remote	
 object	
 messaging	
 protocols	
 are	

suitable	
 for	
 command/control	
 and	
 deployment	
 purposes	

•  They	
 are	
 not	
 suitable	
 for	
 dynamic	
 services	

•  Dual	
 messaging	
 buses	

•  Solu5ons:	
 Adding	
 a	
 publish/subscribe	
 messaging	
 protocol	

•  OMG	
 DDS	

•  Java	
 Messaging	
 Service	

•  EPICSv4	
 pvData,	
 EPICS-­‐DDS	

Service-Oriented
Architecture (SOA) for

Control Systems

Off-line
Model

Online
Model

Machine
Middle Layer

Thick
Application

EPICS	
 	

Thin
Application

Real	
 Accelerator	
 	
 Virtual	
 Accelerator	
 	

•  Modern	
 accelerators	
 have	
 greatly	
 increase	
 complexity	
 and	
 scale	

•  More	
 devices	
 and	
 sub-­‐devices	
 to	
 control,	
 configure,	
 monitor	

simultaneously	

•  With	
 more	
 and	
 more	
 features	
 and	
 automa5ons	
 	

•  High-­‐level	
 client	
 and	
 physics	
 applica5ons	

•  Centralized	
 control	
 panels	
 for	
 users	
 of	
 different	
 roles	

•  Distributed	
 display	
 for	
 off-­‐site	
 users	

•  There	
 exist	
 many	
 standard	
 environments	
 for	
 ACS	

•  EPICS,	
 Tango,	
 Tine,	
 ACNET,	
 etc.	

•  Limited	
 interfacing	
 supports	

•  Hard	
 to	
 expand	
 system	
 by	
 dynamically	
 adding	
 components	
 	

Web Client

Web Server

Optim Client

Optim Server
Request PV

Optim Server CAS

Optim Server
Result PV

Optim Engine

Optim Engine
Thread

MAD-X/
UAL

Twiss File

Web Browser

Web Server

Optimization
Server

Figure 4: Architecture of the general purpose web-based optimization service.

files to the service and returns the visual results of twiss calculations. Physicists can use it
to submit a series of incremental optimizations and see the optimization results remotely.
Although this software as a service (SaaS) prototype provides somewhat limited usefulness
for real applications, it nonetheless demonstrates the core idea on SOA using DDS and lays
down the foundation for further more complicated services.

We began implementing the prototype service using the UAL. Composition UAL is an
Epics-DDS v1.5 example application, and like Tech-X performance apps, it is self-contained
in that there is no need to start an additional process (server). Composition UAL relies
heavily on UAL for defining/reading/writing accelerator lattices (.adxf) and UAL’s Twiss
algorithms.

In general, this set of applications initializes an Epics caServer with pre-defined PV
information and provides a couple of different tools to read data from the server and use the
UAL libs to calculate Twiss parameters and tracking results. There is a publisher to ’tickle’
the beam provide some small variance to the BPM data.

Since multiple Epics caServers can be configured to communicate with one another,
several of these applications can be run at the same to time read and write PV record
data. For example, MachineServer, TwissServer and VAServer are ’pure’ caServer apps
used to initialize PV data and read PV data for calculating results. Figure 5 show how
the MachinePublisherClient and MIAClient use the Epics-DDS API to update the PV data
and read the updates for calculating results. This application has several key components,
including:

• MIAClient - this process is an Epics-DDS application used to read PV data from
the pre-defined topics and calculate both Twiss parameters and Turn-by-turn (TBT)

12

!

DDS	
 Global	
 Data	
 Space	

(Domain)	

Publisher	

Publisher	

Publisher	

Subscriber	

Subscriber	

Subscriber	

Topic	

A	

Publisher	

Publisher	

Publisher	

Subscriber	

Subscriber	

Subscriber	

Topic
B	

Throughput	

MB/sec?	

Throughput	

MB/sec?	

Throughput	

msgs/sec?	

Throughput	

msgs/sec?	

Latency	

msec?	

Priority/	

Rates?	

•  We modeled after org.csstudio.platform.libs.epics and
implemented a set of plug-ins to present DDS topics as PV’s:
•  com.txcorp.soaac.css.platform.libs.dds
•  com.txcorp.soaac.css.platform.libs.dds.ui
•  com.txcorp.soaac.css.pv.dds

•  The added plug-ins enable CSS applications to subscribe/
publish (get/set) a DDS topic (structured like a PV)
•  For example, an OPI widget can be associated to a PV
dds://temperature3

Current Status:
•  Topics (with their associated QoS policies) need to be

p r e c o m p i l e d i n t o j a r f i l e s a n d l o a d e d t h r u
com.txcorp.soaac.css.pv.dds

•  We currently support only DDS topics with structures similar to
PVs (with some meta-data)

Ongoing effort:
•  Add support for general DDS topic structures such as,	
 	

dds://Booster/Quad/Magnet2#current

•  Add support for dynamic topic/QoS definitions via XML
(eliminate the need to implement a separate .jar file)

Domain	
 Par5cipant	

Netwotk	

Subscriber	
 Publisher	

Writer	
 Reader	

TopicWriter	
 TopicReader	

pyDDS	
 Services	

Python	
 Applica5on	

Joining	
 a	
 Data	
 Domain	

A one-stop interface into the pydds global
factory methods
import pydds;

Uers defines their dataspace/runtime and

pass it in as an argument to various other
operations that need it. (See later)
myDataspace =
 pydds.connect_dataspace
 (“Domain name”, “Partition name”)

A Dataspace object should contains some
default subscriber/publisher objects with
some default QoS policies.

Manipulate	
 QoS	
 Policies	

myQoS = pydds.create_qos()

myQoS.set_reliable (3000000)

myQoS.set_transient()

myQoS.set_keep_last (3)

	

Create	
 Topic	
 Reders/Writers	

Creating/Finding a topic in global data
space. Last argument specifies the URI
of topic structure definitions
helloTopic = pydds.createTopic
 (“TopicName”,
 myDataspace,
 myQoS,
 file:///HelloWorld.idl#HelloTopic);
Now create reader/writer objects
helloReader = helloTopic.create_reader
 (readerQoS);
helloWriter = helloTopic.create_writer

 (writerQoS);

Wri5ng	
 and	
 Reading	
 Samples	

Creating a sample

helloSample = helloTopic.create_sample

 (message = “John Smith”, repeat = 3);

Publishing the sample

status = helloWriter.write (helloSample);

Simple read/take

[samples, infos] = helloReader.read();
sys.stdout write(samples[0].message);

Listen-­‐based	
 Read	
 Modeled	
 a\er	
 Twist/
Trellis	

	

 !

!

SOAAC:&Service,Oriented&Architecture&for&Next,Generation&Large,Scale&
Accelerator&Control&Systems&

Phase&II&SBIR&Project&,&DE,FG02,08ER85043&
Nanbor&Wang&–&Tech,X&Corporation&

In!collaboration!with!NSLS1II!control!system!researchers!at!BNL,!Tech1X!Corporation!is!developing!a!

reference!Service1Oriented!Architecture!(SOA)!environment!for!accelerator!control!systems!that!

promotes!multiple!levels!of!loose!coupling!to!increase!the!robustness!and!adaptability!of!overall!control!

applications.!Traditional!frameworks!for!accelerator!control!system!development!do!not!scale!well!for!

control!systems!of!next1generation!large1scale!accelerators!that!consist!of!many!sub1accelerators!and!

operation!teams.!By!focusing!on!strengthening!the!existing!EPICSv4!dynamic!data!interfaces!and!

communication!mechanisms,!this!project!contributes!to!the!development!of!High1Level!Application!(HLA)!

environment!in!NSLS1II!control!systems!being!developed!by!BNL.!!The!attached!diagram!illustrates!the!

architecture!of!a!HLA!environment!adopted!by!the!NSLS1II!control!system!group.!The!new!development!

paradigm!enabled!through!this!paradigm!will!encourage!robust!integrations!of!heterogeneous!control!

subsystems.!Various!control!subsystems!and!activities!can!be!implemented!separately!and!packaged!

into!“services”!with!well1defined!“interfaces”!for!to!enable!composition!of!applications.!!Tech1X!is!

currently!working!with!NSLS1II!control!system!group!to!enhance!the!design!of!dynamic!data!access!

interface!and!developing!an!example!HLA!scenario!that!include!a!model!server!and!CSS!presentation!to!

demonstrate!how!new!HLA’s!can!be!incorporated!into!the!system!easily.!

High-Level
Client

Applications

Presentation Clients
(Control System

Studio)
MMLT Clients Scripting Clients

Machine
Server

BPM
Server

EPICS CAv3

Dipoles Quad’s Sext’s

EPICS CAv3

BPM BPM BPM

Service Bus EPICS CAv4 (pvData,pvAccess), EPICS-DDS

Model Server
(Tracy/Elegant)

Lattice/
ChannelFinder

Server

IRMIS
Tables

Orbit/Data Server
(Conv/Resp)Middle-Level

Services

Real-time
Front-End

Acknowledgment:	
 The	
 authors	
 wish	
 to	
 thank	
 Nikokay	
 Malitsky	
 of	
 Brookhaven	
 Na5onal	
 Lab	
 for	
 providing	
 the	
 middle-­‐
layer	
 server	
 examples,	
 and	
 	
 Jim	
 Kowalkoski,	
 Marc	
 Paterno,	
 	
 Kurt	
 Biery,	
 and	
 Erik	
 Go^schalk	
 of	
 Fermilab	
 for	
 discussing	
 the	

needs	
 and	
 requirements	
 of	
 the	
 projects	
 they	
 are	
 working	
 on.	

