MOPMN —  Poster   (10-Oct-11   16:30—18:00)
Chair: J.M. Meyer, ESRF, Grenoble, France
Paper Title Page
MOPMN001 Beam Sharing between the Therapy and a Secondary User 231
  • K.J. Gajewski
    TSL, Uppsala, Sweden
  The 180 MeV proton beam from the cyclotron at The Svedberg Laboratory is primarily used for a patient treatment. Because of the fact that the proton beam is needed only during a small fraction of time scheduled for the treatment, there is a possibility to divert the beam to another location to be used by a secondary user. The therapy staff (primary user) controls the beam switching process after an initial set-up which is done by the cyclotron operator. They have an interface that allows controlling the accelerator and the beam line in all aspects needed for performing the treatment. The cyclotron operator is involved only if any problem occurs. The secondary user has its own interface that allows a limited access to the accelerators control system. Using this interface it is possible to start and stop the beam when it is not used for the therapy, grant access to the experimental hall and monitor the beam properties. The tools and procedures for the beam sharing between the primary and the secondary user are presented in the paper.  
poster icon Poster MOPMN001 [0.924 MB]  
MOPMN002 Integration of the Moment-Based Beam-Dynamics Simulation Tool V-Code into the S-DALINAC Control System 235
  • S. Franke, W. Ackermann, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
  • R. Eichhorn, F. Hug, C. Klose, N. Pietralla, M. Platz
    TU Darmstadt, Darmstadt, Germany
  Funding: This work is supported by DFG through SFB 634.
Within accelerator control systems fast and accurate beam dynamics simulation programs can advantageously assist the operators to get a more detailed insight into the actual machine status. The V-Code simulation tool implemented at TEMF is a fast tracking code based on the Vlasov equation. Instead of directly solving this partial differential equation the considered particle distribution function is represented by a discrete set of characteristic moments. The accuracy of this approach is adjustable with the help of the considered order of moments and by representing the particle distribution through multiple sets of moments in a multi-ensemble environment. In this contribution an overview of the numerical model is presented together with implemented features for its dedicated integration into the control system of the Superconducting Linear Accelerator S-DALINAC.
poster icon Poster MOPMN002 [0.901 MB]  
MOPMN003 A Bottom-up Approach to Automatically Configured Tango Control Systems. 239
  • S. Rubio-Manrique, D.B. Beltrán, I. Costa, D.F.C. Fernández-Carreiras, J.V. Gigante, J. Klora, O. Matilla, R. Ranz, J. Ribas, O. Sanchez
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  Alba maintains a central repository, so called "Cabling and Controls database" (CCDB), which keeps the inventory of equipment, cables, connections and their configuration and technical specifications. The valuable information kept in this MySQL database enables some tools to automatically create and configure Tango devices and other software components of the control systems of Accelerators, beamlines and laboratories. This paper describes the process involved in this automatic setup.  
poster icon Poster MOPMN003 [0.922 MB]  
MOPMN004 An Operational Event Announcer for the LHC Control Centre Using Speech Synthesis 242
  • S.T. Page, R. Alemany-Fernandez
    CERN, Geneva, Switzerland
  The LHC island of the CERN Control Centre is a busy working environment with many status displays and running software applications. An audible event announcer was developed in order to provide a simple and efficient method to notify the operations team of events occurring within the many subsystems of the accelerator. The LHC Announcer uses speech synthesis to report messages based upon data received from multiple sources. General accelerator information such as injections, beam energies and beam dumps are derived from data received from the LHC Timing System. Additionally, a software interface is provided that allows other surveillance processes to send messages to the Announcer using the standard control system middleware. Events are divided into categories which the user can enable or disable depending upon their interest. Use of the LHC Announcer is not limited to the Control Centre and is intended to be available to a wide audience, both inside and outside CERN. To accommodate this, it was designed to require no special software beyond a standard web browser. This paper describes the design of the LHC Announcer and how it is integrated into the LHC operational environment.  
poster icon Poster MOPMN004 [1.850 MB]  
MOPMN005 ProShell – The MedAustron Accelerator Control Procedure Framework 246
  • R. Moser, A.B. Brett, M. Marchhart, C. Torcato de Matos
    EBG MedAustron, Wr. Neustadt, Austria
  • J. Dedič, S. Sah
    Cosylab, Ljubljana, Slovenia
  • J. Gutleber
    CERN, Geneva, Switzerland
  MedAustron is a centre for ion-therapy and research in currently under construction in Austria. It features a synchrotron particle accelerator for proton and carbon-ion beams. This paper presents the architecture and concepts for implementing a procedure framework called ProShell. Procedures to automate high level control and analysis tasks for commissioning and during operation are modelled with Petri-Nets and user code is implemented with C#. It must be possible to execute procedures and monitor their execution progress remotely. Procedures include starting up devices and subsystems in a controlled manner, configuring, operating O(1000) devices and tuning their operational settings using iterative optimization algorithms. Device interfaces must be extensible to accommodate yet unanticipated functionalities. The framework implements a template for procedure specific graphical interfaces to access device specific information such as monitoring data. Procedures interact with physical devices through proxy software components that implement one of the following interfaces: (1) state-less or (2) state-driven device interface. Components can extend these device interfaces following an object-oriented single inheritance scheme to provide augmented, device-specific interfaces. As only two basic device interfaces need to be defined at an early project stage, devices can be integrated gradually as commissioning progresses. We present the architecture and design of ProShell and explain the programming model by giving the simple example of the ion source spectrum analysis procedure.  
poster icon Poster MOPMN005 [0.948 MB]  
HMI Redesign of SARAF MCS  
  • I.G. Gertz, I. Eliyahu, I. Mardor, A. Perry, E. Reinfeld, L. Weissman
    Soreq NRC, Yavne, Israel
  The Soreq Applied Research Accelerator Facility (SARAF) is a 5-40 MeV, 0.04-2 mA proton/deuteron RF superconducting linear accelerator, which is under commissioning at Soreq NRC. SARAF will be a multi-user facility, whose main activities will be neutron physics and applications, radio-pharmaceuticals development and production, and basic nuclear physics research. The SARAF Control System is based mainly on National Instruments and hardware and software. Since the system has been recently commissioned and integrated, the applications are designed as stand-alone VI's with full system expert authorization, except for the LLRF application, which is designed in expert/operator architecture. This paper presents an overview of the SARAF HMI redesign concepts and future implementation.  
poster icon Poster MOPMN007 [1.322 MB]  
MOPMN008 LASSIE: The Large Analogue Signal and Scaling Information Environment for FAIR 250
  • T. Hoffmann, H. Bräuning, R. Haseitl
    GSI, Darmstadt, Germany
  At FAIR, the Facility for Antiproton and Ion Research, several new accelerators such as the SIS 100, HESR, CR, the inter-connecting HEBT beam lines, S-FRS and experiments will be built. All of these installations are equipped with beam diagnostic devices and other components which deliver time-resolved analogue signals to show status, quality, and performance of the accelerators. These signals can originate from particle detectors such as ionization chambers and plastic scintillators, but also from adapted output signals of transformers, collimators, magnet functions, RF cavities, and others. To visualize and precisely correlate the time axis of all input signals a dedicated FESA based data acquisition and analysis system named LASSIE, the Large Analogue Signal and Scaling Information Environment, is under way. As the main operation mode of LASSIE, pulse counting with adequate scaler boards is used, without excluding enhancements for ADC, QDC, or TDC digitization in the future. The concept, features, and challenges of this large distributed DAQ system will be presented.  
poster icon Poster MOPMN008 [7.850 MB]  
MOPMN009 First Experience with the MATLAB Middle Layer at ANKA 253
  • S. Marsching
    Aquenos GmbH, Baden-Baden, Germany
  • E. Huttel, M. Klein, A.-S. Müller, N.J. Smale
    KIT, Karlsruhe, Germany
  The MATLAB Middle Layer has been adapted for use at ANKA. It was finally commissioned in March 2011. It is used for accelerator physics studies and regular tasks like beam-based alignment and response matrix analysis using LOCO. Furthermore, we intend to study the MATLAB Middle Layer as default orbit correction tool for user operation. We will report on the experience made during the commissioning process and present the latest results obtained while using the MATLAB Middle Layer for machine studies.  
poster icon Poster MOPMN009 [0.646 MB]  
MOPMN010 Development of a Surveillance System with Motion Detection and Self-location Capability 257
  • M. Tanigaki, S. Fukutani, Y. Hirai, H. Kawabe, Y. Kobayashi, Y. Kuriyama, M. Miyabe, Y. Morimoto, T. Sano, N. Sato, K. Takamiya
    KURRI, Osaka, Japan
  A surveillance system with the motion detection and the location measurement capability has been in development for the help of effective security control of facilities in our institute. The surveillance cameras and sensors placed around the facilities and the institute have the primary responsibility for preventing unwanted accesses to our institute, but there are some cases where additional temporary surveillance cameras are used for the subsidiary purposes. Problems in these additional surveillance cameras are the detection of such unwanted accesses and the determination of their respective locations. To eliminate such problems, we are constructing a surveillance camera system with motion detection and self-locating features based on a server-client scheme. A client, consisting of a network camera, wi-fi and GPS modules, acquires its location measured by use of GPS or the radio wave from surrounding wifi access points, then sends its location to a remote server along with the motion picture over the network. The server analyzes such information to detect the unwanted access and serves the status or alerts on a web-based interactive map for the easy access to such information. We report the current status of the development and expected applications of such self-locating system beyond this surveillance system.  
MOPMN012 The Electronic Logbook for LNL Accelerators 260
  • S. Canella, O. Carletto
    INFN/LNL, Legnaro (PD), Italy
  In spring 2009 all run-time data concerning the particle accelerators at LNL (Laboratori Nazionali di Legnaro) were still registered mainly on paper. TANDEM and its Negative Source data were logged on a large format paper logbook, for ALPI booster and PIAVE injector with its Positive ECR Source a number of independent paper notebooks were used, together with plain data files containing raw instant snapshots of each RF superconductive accelerators. At that time a decision was taken to build a new tool for a general electronic registration of accelerators run-time data. The result of this effort, the LNL electronic logbook, is presented here .  
poster icon Poster MOPMN012 [8.543 MB]  
MOPMN013 Operational Status Display and Automation Tools for FERMI@Elettra 263
  • C. Scafuri
    ELETTRA, Basovizza, Italy
  Funding: The work was supported in part by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
Detecting and locating faults and malfunctions of an accelerator is a difficult and time consuming task. The situation is even more difficult during the commissioning phase of a new accelerator, when physicists and operators are still acquiring confidence with the plant. On the other hand a fault free machine does not imply that it is ready to run: the definition of "readiness" depends on what is the expected behavior of the plant. In the case of FERMI@Elettra, in which the electron beam goes to different branches of the machine depending on the programmed activity, the configuration of the plant determines the rules for understanding whether the activity can be carried out or not. In order to help the above task and display the global status of the plant, a tool known as the "matrix" has been developed. It is composed of a graphical front-end, which displays a synthetic view of the plant status grouped by subsystem and location along the accelerator, and by a back-end made of Tango servers which reads the status of the machine devices via the control system and calculates the rules. The back-end also includes a set of objects known as "sequencers" that perform complex actions automatically for actively switching from one accelerator configuration to another.
poster icon Poster MOPMN013 [0.461 MB]  
MOPMN014 Detector Control System for the ATLAS Muon Spectrometer And Operational Experience After The First Year of LHC Data Taking 267
  • S. Zimmermann
    Albert-Ludwig Universität Freiburg, Freiburg, Germany
  • G. Aielli
    Università di Roma II Tor Vergata, Roma, Italy
  • M. Bindi, A. Polini
    INFN-Bologna, Bologna, Italy
  • S. Bressler, E. Kajomovitz, S. Tarem
    Technion, Haifa, Israel
  • R.G.K. Hart
    NIKHEF, Amsterdam, The Netherlands
  • G. Iakovidis, E. Ikarios, K. Karakostas, S. Leontsinis, E. Mountricha
    National Technical University of Athens, Athens, Greece
  Muon Reconstruction is a key ingredient in any of the experiments at the Large Hadron Collider LHC. The muon spectrometer of ATLAS comprises Monitored Drift Tube (MDTs) and Cathode Strip Chambers (CSCs) for precision tracking as well as Resistive Plate (RPC) and Thin Gap (TGC) Chambers as muon trigger and for second coordinate measurement. Together with a strong magnetic field provided by a super conducting toroid magnet and an optical alignment system a high precision determination of muon momentum up to the highest particle energies accessible by the LHC collisions is provided. The Detector Control System (DCS) of each muon sub-detector technology must efficiently and safely manage several thousands of LV and HV channels, the front-end electronics initialization as well as monitoring of beam, background, magnetic field and environmental conditions. This contribution will describe the chosen hardware architecture, which as much as possible tries to use common technologies, and the implemented controls hierarchy. In addition the muon DCS human machine interface (HMI) layer and operator tools will be covered. Emphasis will be given to reviewing the experience from the first year of LHC and detector operations, and to lessons learned for future large scale detector control systems. We will also present the automatic procedures put in place during last year and review the improvements gained by them for data taking efficiency. Finally, we will describe the role DCS plays in assessing the quality of data for physics analysis and in online optimization of detector conditions.
On Behalf of the ATLAS Muon Collaboration
poster icon Poster MOPMN014 [0.249 MB]  
MOPMN015 Multi Channel Applications for Control System Studio (CSS) 271
  • K. Shroff, G. Carcassi
    BNL, Upton, Long Island, New York, USA
  • R. Lange
    HZB, Berlin, Germany
  Funding: Work supported by U.S. Department of Energy
This talk will present a set of applications for CSS built on top of the services provided by the ChannelFinder, a directory service for control system, and PVManager, a client library for data manipulation and aggregation. ChannelFinder Viewer allows for the querying of the ChannelFinder service, and the sorting and tagging of the results. Multi Channel Viewer allows the creation of plots from the live data of a group of channels.
poster icon Poster MOPMN015 [0.297 MB]  
MOPMN016 The Spiral2 Radiofrequency Command Control 274
  • D.T. Touchard, C. Berthe, P. Gillette, M. Lechartier, E. Lécorché, G. Normand
    GANIL, Caen, France
  • Y. Lussignol, D. Uriot
    CEA/DSM/IRFU, France
  Mainly for carrying out nuclear physics experiences, the SPIRAL2 facility based at Caen in France will aim to provide new radioactive rare ion or high intensity stable ion beams. The driver accelerator uses several radiofrequency systems: RFQ, buncher and superconducting cavities, driven by independent amplifiers and controlled by digital electronics. This low level radiofrequency subsystem is integrated into a regulated loop driven by the control system. A test of a whole system is foreseen to define and check the computer control interface and applications. This paper describes the interfaces to the different RF equipment into the EPICS based computer control system. CSS supervision and foreseen high level tuning XAL/JAVA based applications are also considered.  
poster icon Poster MOPMN016 [0.986 MB]  
MOPMN018 Toolchain for Online Modeling of the LHC 277
  • G.J. Müller, X. Buffat, K. Fuchsberger, M. Giovannozzi, S. Redaelli, F. Schmidt
    CERN, Geneva, Switzerland
  The control of high intensity beams in a high energy, superconducting machine with complex optics like the CERN Large Hadron Collider (LHC) is challenging not only from the design aspect but also for operation. To support the LHC beam commissioning, operation and luminosity production, efforts were recently devoted towards the design and implementation of a software infrastructure aimed to use the computing power of the beam dynamics code MADX-X in the framework of the Java-based LHC control and measurement environment. Alongside interfacing to measurement data as well as to settings of the control system, the best knowledge of machine aperture and optic models is provided. In this paper, we present the status of the toolchain and illustrate how it has been used during commissioning and operation of the LHC. Possible future implementations are also discussed.  
poster icon Poster MOPMN018 [0.562 MB]  
MOPMN019 Controling and Monitoring the Data Flow of the LHCb Read-out and DAQ Network 281
  • R. Schwemmer, C. Gaspar, N. Neufeld, D. Svantesson
    CERN, Geneva, Switzerland
  The LHCb readout uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment's raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out chain to count fragments, packets and their rates at different positions. To keep uniformity throughout the experiment, all control software was developed using the common SCADA software, PVSS, with the JCOP framework as base. The presentation will focus on the low level controls interface developed for the L1 boards and the networking probes, as well as the integration of the high level user interfaces into PVSS. We will show the way in which the users and developers interact with the software, configure the hardware and follow the flow of data through the DAQ network.  
MOPMN020 Integrating Controls Frameworks: Control Systems for NA62 LAV Detector Test Beams 285
  • O. Holme, J.A.R. Arroyo Garcia, P. Golonka, M. Gonzalez-Berges, H. Milcent
    CERN, Geneva, Switzerland
  • O. Holme
    ETH, Zurich, Switzerland
  The detector control system for the NA62 experiment at CERN, to be ready for physics data-taking in 2014, is going to be built based on control technologies recommended by the CERN Engineering group. A rich portfolio of the technologies is planned to be showcased and deployed in the final application, and synergy between them is needed. In particular two approaches to building controls application need to play in harmony: the use of the high-level application framework called UNICOS, and a bottom-up approach of development based on the components of the JCOP Framework. The aim of combining the features provided by the two frameworks is to avoid duplication of functionality and minimize the maintenance and development effort for future controls applications. In the paper the result of the integration efforts obtained so far are presented; namely the control applications developed for beam-testing of NA62 detector prototypes. Even though the delivered applications are simple, significant conceptual and development work was required to bring about the smooth inter-play between the two frameworks, while assuring the possibility of unleashing their full power. A discussion of current open issues is presented, including the viability of the approach for larger-scale applications of high complexity, such as the complete detector control system for the NA62 detector.  
poster icon Poster MOPMN020 [1.464 MB]  
MOPMN022 Database Driven Control System Configuration for the PSI Proton Accelerator Facilities 289
  • H. Lutz, D. Anicic
    Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
  At PSI there are two facilities with proton cyclotron accelerators. The machine control system for PROSCAN which is used for medical patient therapy, is running with EPICS. The High Intensity Proton Accelerator (HIPA) is mostly running under the in-house control system ACS. Dedicated parts of HIPA are under EPICS control. Both these facilities are configured through an Oracle database application suite. This paper presents the concepts and tools which are used to configure the control system directly from the database-stored configurations. Such an approach has advantages which contribute for better control system reliability, overview and consistency.  
poster icon Poster MOPMN022 [0.992 MB]  
MOPMN023 Preliminary Design and Integration of EPICS Operation Interface for the Taiwan Photon Source 292
  • Y.-S. Cheng, J. Chen, P.C. Chiu, K.T. Hsu, C.H. Kuo, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
  The TPS (Taiwan Photon Source) is the latest generation of 3 GeV synchrotron light source which has been in construction since 2010. The EPICS framework is adopted as control system infrastructure for the TPS. The EPICS IOCs (Input Output Controller) and various database records have been gradually implemented to control and monitor each subsystem of TPS. The subsystem includes timing, power supply, motion controller, miscellaneous Ethernet-compliant devices etc. Through EPICS PVs (Process Variables) channel access, remote access I/O data via Ethernet interface can be observed by the useable graphical toolkits, such as the EDM (Extensible Display Manager) and MATLAB. The operation interface mainly includes the function of setting, reading, save, restore and etc. Integration of operation interfaces will depend upon properties of each subsystem. In addition, the centralized management method is utilized to serve every client from file servers in order to maintain consistent versions of related EPICS files. The efforts will be summarized in this report.  
MOPMN025 New SPring-8 Control Room: Towards Unified Operation with SACLA and SPring-8 II Era. 296
  • A. Yamashita, R. Fujihara, N. Hosoda, Y. Ishizawa, H. Kimura, T. Masuda, C. Saji, T. Sugimoto, S. Suzuki, M. Takao, R. Tanaka
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Fukui, Y. Otake
    RIKEN/SPring-8, Hyogo, Japan
  We have renovated the SPring-8 control room. This is the first major renovation since its inauguration in 1997. In 2011, the construction of SACLA (SPring-8 Angstrom Compact Laser Accelerator) was completed and it is planned to be controlled from the new control room for close cooperative operation with the SPring-8 storage ring. It is expected that another SPring-8 II project will require more workstations than the current control room. We have extended the control room area for these foreseen projects. In this renovation we have employed new technology which did not exist 14 years ago, such as a large LCD and silent liquid cooling workstations for comfortable operation environment. We have incorporated many ideas which were obtained during the 14 years experience of the design. The operation in the new control room began in April 2011 after a short period of the construction.  
MOPMN027 The LHC Sequencer 300
  • R. Alemany-Fernandez, V. Baggiolini, R. Gorbonosov, D. Khasbulatov, M. Lamont, P. Le Roux, C. Roderick
    CERN, Geneva, Switzerland
  The Large Hadron Collider (LHC) at CERN is a highly complex system made of many different sub-systems whose operation implies the execution of many tasks with stringent constraints on the order and duration of the execution. To be able to operate such a system in the most efficient and reliable way the operators in the CERN control room use a high level control system: the LHC Sequencer. The LHC Sequencer system is composed of several components, including an Oracle database where operational sequences are configured, a core server that orchestrates the execution of the sequences, and two graphical user interfaces: one for sequence edition, and another for sequence execution. This paper describes the architecture of the LHC Sequencer system, and how the sequences are prepared and used for LHC operation.  
poster icon Poster MOPMN027 [2.163 MB]  
MOPMN028 Automated Voltage Control in LHCb 304
  • L.G. Cardoso, C. Gaspar, R. Jacobsson
    CERN, Geneva, Switzerland
  LHCb is one of the 4 LHC experiments. In order to ensure the safety of the detector and to maximize efficiency, LHCb needs to coordinate its own operations, in particular the voltage configuration of the different sub-detectors, according to the accelerator status. A control software has been developed for this purpose, based on the Finite State Machine toolkit and the SCADA system used for control throughout LHCb (and the other LHC experiments). This software permits to efficiently drive both the Low Voltage (LV) and High Voltage (HV) systems of the 10 different sub-detectors that constitute LHCb, setting each sub-system to the required voltage (easily configurable at run-time) based on the accelerator state. The control software is also responsible for monitoring the state of the Sub-detector voltages and adding it to the event data in the form of status-bits. Safe and yet flexible operation of the LHCb detector has been obtained and automatic actions, triggered by the state changes of the accelerator, have been implemented. This paper will detail the implementation of the voltage control software, its flexible run-time configuration and its usage in the LHCb experiment.  
poster icon Poster MOPMN028 [0.479 MB]  
MOPMN029 Spiral2 Control Command: First High-level Java Applications Based on the OPEN-XAL Library 308
  • P. Gillette, E. Lemaître, G. Normand, L. Philippe
    GANIL, Caen, France
  The Radioactive Ions Beam SPIRAL2 facility will be based on a supra-conducting driver providing deuterons or heavy ions beams at different energies and intensities. Using then the ISOLD method, exotic nuclei beams will be sent either to new physics facilities or to the existing GANIL experimental areas. To tune this large range of beams, high-level applications will be mainly developed in Java language. The choice of the OPEN-XAL application framework, developed at the Spallation Neutron Source (SNS), has proven to be very efficient and greatly helps us to design our first software pieces to tune the accelerator. The first part of this paper presents some new applications: "Minimisation" which aims at optimizing a section of the accelerator; a general purpose software named "Hook" for interacting with equipment of any kind; and an application called "Profils" to visualize and control the Spiral2 beam wire harps. As tuning operation has to deal with configuration and archiving issues, databases are an effective way to manage data. Therefore, two databases are being developed to address these problems for the SPIRAL2 command control: one is in charge of device configuration upstream the Epics databases while another one is in charge of accelerator configuration (lattice, optics and set of values). The last part of this paper aims at describing these databases and how java applications will interact with them.  
poster icon Poster MOPMN029 [1.654 MB]