
CONTROLLING AND MONITORING THE DATA FLOW OF THE LHCb
READ-OUT AND DAQ NETWORK

Rainer Schwemmer, C. Gaspar, N. Neufeld, D. Svantesson, CERN, Geneva, Switzerland

Abstract

The LHCb read-out uses a set of 320 FPGA based boards
as interface between the on-detector hardware and the GBE
DAQ network. The boards are the logical Level 1 (L1)
read-out electronics and aggregate the experiment’s raw
data into event fragments that are sent to the DAQ network.
To control the many parameters of the read-out boards, an
embedded PC is included on each board, connecting to the
boards ICs and FPGAs. The data from the L1 boards is
sent through an aggregation network into the High Level
Trigger farm. The farm comprises approximately 1500 PCs
which at first assemble the fragments from the L1 boards
and then do a partial reconstruction and selection of the
events. In total there are approximately 3500 network con-
nections. Data is pushed through the network and there is
no mechanism for resending packets. Loss of data on a
small scale is acceptable but care has to be taken to avoid
data loss if possible. To monitor and debug losses, differ-
ent probes are inserted throughout the entire read-out chain
to count fragments, packets and their rates at different po-
sitions. To keep uniformity throughout the experiment, all
control software was developed using the common SCADA
software, PVSS, with the JCOP framework as base. The
presentation will focus on the low level controls interface
developed for the L1 boards and the networking probes, as
well as the integration of the high level user interfaces into
PVSS.

LHCB READ-OUT CHAIN

The LHCb DAQ system is built around an Ethernet
based network, which transports the experiment’s data
from the detector to a Linux based filter farm. This farm
consists of 1500 computers and processes the data of every
accepted event and then decides whether the event is inter-
esting or if it should be discarded. Accepted events are then
sent on via IP over Ethernet to a group of computers which
replicates the stream of accepted data to the disk writing
processes and to a dedicated monitoring farm.

Data is accepted at a maximum rate of 1.1 MHz which
translates to a data rate of approximately 50 GByte/s on
the input of the network. On the border between network
and detector is a set of 350 FPGA based converter boards –
Trigger Electronics and Level 1 board (TELL1) [1] – which
receive the data via optical links from the detector. The data
is first checked for consistency and then compressed into a
sub-detector specific format. After that, the event data is
combined with meta information and a unique event ID. In
the last step, data is coalesced into IP packets and sent to an
on-board, 4 port Gigabit Ethernet (GbE) card. The TELL1s

then send the data to the filter farm through two main data
switches and a set of 50 fan-out switches. The total packet
rate in the network is about 35 MHz.

Inside a filter farm node, the event fragments are assem-
bled into complete events and then handed off to trigger ap-
plications which do a partial reconstruction and filter pro-
cess. From the filter farm onward, the data rate drops to
a more manageable rate of 200 MB/s and is again aggre-
gated on two dedicated machines before being replicated
to the online monitoring farm and the storage layer. The
local storage system is only a temporary buffer for the data
though. Data is written in sets of 3 GB files. Once a file is
full, its consistency is verified, check sums are calculated
and the file is sent off to permanent tape storage at CERN.

Throughout this chain, there are many points, at which
data can be sporadically lost or which can halt the data tak-
ing process completely.

TYPICAL LOSS POINTS AND
BOTTLENECKS

Read-out Boards

When a read-out board fails to produce data, there will
not be enough fragments to rebuild the event in the farm
and the event will be discarded. If a TELL1 stops send-
ing any data at all, the whole read-out chain is stopped.
If it cannot cope with the data rate for some reason, and
slows down, the whole DAQ process is affected. In or-
der to quickly diagnose problems inside the read-out board,
the data flow is already monitored on its way through the
board.

There are five FPGAs on each board, where four are re-
sponsible for checking and compressing the sub-detector
data and one is assembling the data from the four pre-
processors. Additional meta information from the Timing
and Fast Control (TFC) system is then added to each event,
before it is sent to a buffer for network transmission.

Typical problems here can be a front-end not sending
data or the data transmission over the board between chips.
The compression and gathering algorithms, if they are
overwhelmed by too much data due to noisy channels in the
detector or unexpectedly high occupancy events can also
slow down the process or fail completely.

Network

At the design time of the read-out system it was deemed
too unpractical to have a reliable transport protocol be-
tween the TELL1 boards and the filter farm. The huge
number of farm nodes and TELL1 boards would necessi-

Proceedings of ICALEPCS2011, Grenoble, France MOPMN019

Operational tools and operators’ view 281 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



tate a substantial amount of memory for state information
and data buffering on the read-out boards, which at that
time was just not an option. The chosen protocol is a pure
push protocol, where data is being sent as IP packets when-
ever bandwidth is available on the read-out boards. In a
way the protocol behaves like UDP. In case the switches
decide to drop packets, there is no retransmission.

The situation is further complicated by the fact, that all
the fragments for a particular event have to be sent to a
single farm node. The fragments leave the TELL1 boards
all at the same time and for a short time there is a strong
overcommitment of the output port to the farm node where
the data is supposed to go to. The average rate to a single
farm node is still far below the 1 Gigabit/s limit, but for a
switch this is a typical situation to throw away packets, if it
runs out of buffer space.

Farm Nodes

Inside the farm computers, the data is received by the
network card, assembled into events and then passed on to
the trigger applications[4]. If the machine is too busy, data
can be lost already on it’s way from the network card to
the kernel, before it enters any application. Other problems
can be trigger processes getting stuck and not processing
events any more, or a machine in general having hardware
problems which influences performance.

Storage Layer

As the data rate is reduced to about 200 MB/s after the
trigger farm and there is only inter-computer communica-
tion, the read-out chain uses the TCP/IP protocol from the
farm onward. TCP is a reliable protocol, so data loss in the
network is not as much of a problem any more as in the
steps before. However, switches can fail and processes can
die unexpectedly, so this part of the system is monitored as
well.

The actual process of writing at a sustained rate of
200 MB/s for several hours per day also requires special
hardware, especially if it has to be protected from single
mode failures. For data storage, we use a fiber channel
based Storage Area Network (SAN) consisting of several
head nodes and a fully redundant hard-disk array. The en-
tire SAN is set up in an active-active configuration and
again each connection point in the fiber network is mon-
itored to make sure that all components continue working
and share the load.

READ-OUT CHAIN PROBES

In the end one wants to be able to diagnose, as quickly
as possible, why the system’s performance is degraded and
which link in the read-out chain is responsible. In order
to find the culprit, we have – over time – inserted many
probes to gather statistics throughout the entire DAQ pro-
cess. At the same time, care had to be taken to not overload

the components with probes, because they are usually all
highly utilized by the DAQ process.

Read-out Boards

On the TELL1 boards, the number of event fragments
that come in on every optical link is already counted, to find
misbehaving front-ends. After the pre-processing stage,
event numbers are counted as they leave the pre-processing
FPGAs and when they enter the aggregation FPGA. A final
count is done when they are assembled into IP packets and
how many packets are sent to the GbE card.

The TELL1 comes with an embedded 486 CPU that sits
on each board and which is capable of talking to all the
FPGAs and other micro-chips on the board via PCI and I2C
buses. A program on the PC periodically gathers all the
counters and publishes them through a unified messaging
layer, called DIM[2], to the Experiment Control System
(ECS) [3].

Network

Since we are using only off-the-shelf network equip-
ment we can use the standard counters that come with the
switches and routers. What makes the situation a bit more
complicated is the fact that a switch does not know any-
thing about event fragments but only about network pack-
ets. It also has persistent counters, that are not reset on
every run change. Additionally, on the core routers, which
have to cope with the full 50 GB/s, 35 MHz packet rate,
we cannot permanently run the full statistics gathering, be-
cause it overloads their CPUs and slows down normal net-
work operations.

Nevertheless, this is the only semi-blind spot in the sys-
tem, and by monitoring the data leaving the TELL1s as
network packets and the data entering the farm nodes also
as packets, we can trace back problems to the switches and
then check in more detail where the problem is by switch-
ing on specific counting features in the switches.

General data, like port counters are directly gathered via
scripts from the ECS. For more in depth debugging ses-
sions, the system administrators have to directly log in to
the switches and check the statistics manually or use dedi-
cated console scripts.

Farm Nodes

We also had trouble with data being lost on the way
from the network card to the application. We are using the
counting features of the Linux Firewall to count packets as
they are arriving. The packets are filtered by source IP ad-
dresses, which can then be mapped to the sending TELL1s.

Further up in the chain we count again the number of
assembled event fragments and from which source they
came. Finally, the total processed and accepted/rejected
events are counted as well.

Again, like on the read-out boards, a special program
was developed to gather the statistical counters of the fire-

MOPMN019 Proceedings of ICALEPCS2011, Grenoble, France

282C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view



Figure 1: Top overview panel of the DAQ flow monitor. The User can click on the buttons of the different routing points
to get a more a more detailed view of the subsystem.

Figure 2: Detailed counters of the intersection between TELL1s and the trigger farm. ottellc21 is not producing any data
and subsequently no events are produced.

Proceedings of ICALEPCS2011, Grenoble, France MOPMN019

Operational tools and operators’ view 283 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



wall and the trigger processes and publish them to the ECS.
In this case more effort had to be put into the program,
since it has to process several times the number of frag-
ments times the number of TELL1s times the number of
farm nodes.

We developed a tiered process hierarchy, where pro-
grams on individual farm nodes send their statistical infor-
mation to higher level nodes where the data is added to-
gether and then sent to a central processing program, which
again adds the sub-results and publishes them. The gath-
ering programs also tap into the control system to detect
when runs start and stop, and to detect which parts of the
detector are actually part of the read-out. This is neces-
sary, because the detector can be split into its individual
sub-detectors which can run in standalone mode.

Storage Layer

Finally the accepted data has to be written to disk. Again
there are a number of critical processes, which can fail and
contribute to the loss of data. Since this part of the read-
out is based on TCP, data loss is not caused by network
packet drops or disappearing events, but through loss of
performance. If the data cannot be written to the disks
fast enough, or there are general hardware problems on the
way to the disks, the system will slow down, decreasing the
amount of physics data that is gathered over time.

Data arrives from the farm on two dedicated machines,
which aggregates the events from the 1500 sources into file
streams. There are usually several files being written in par-
allel for better load balancing. The files are then written by
a simplified distributed file system [5]. All written events
are again counted by the writing daemons and published to
the ECS.

While we are still counting events up to the point where
the data is written into actual files, we switch to purely rate
based monitoring on the actual SAN back-end. There are
fairly good standard tools like Munin[6] and problems in
this area are outside the scope of what the operators of the
experiment are usually dealing with. Subsequently we are
using these tools directly instead of relaying the informa-
tion to the ECS. Information is gathered from the storage
head nodes directly, on the Fiber Channel switches and
from the disk storage system itself. We developed dedi-
cated plug-ins for munin, to monitor individual raid sets in
the SAN and the throughput through each individual fiber
channel path that leads to them. The results are then dis-
played on a dedicated web page. A permanent screen in the
control room displays a sub-set of the most important rates
to the operators.

USER INTERFACE

All the information gathered from the different counters
and probes throughout the network has to be compiled into
an easily understandable interface, which allows the user
to quickly pinpoint problems. To hide the fact that there
are hundreds of thousands of counters, we developed a

dedicated master process, which gathers all the counters,
sorts them into categories of either event counters, network
packet counters or byte counters and calculates the rates of
these for all the major routing points in the system.

A UI panel then shows a schematic representation of
these points and the rates at which data is passing through
them. In case of problems, the operator can quickly diag-
nose the point at which the disruption is happening. For
more in-depth analysis, all the routing points have dedi-
cated UI expert panels, which show the full multitude of
counters. The top overview panel is shown in Fig. 1. In the
case shown here, there is a problem with the assembly of
the event fragments. Packets are arriving at the farm, but no
events are produced by the event building processes. Look-
ing at the detailed view of the TELL1 - HLT connection in
Fig. 2, one can see a single TELL1 not producing any data.

CONCLUSION

We have developed a multi-tiered hierarchy of programs,
which are capable of reading the various statistics coun-
ters that are present throughout the LHCb DAQ chain and
moreover, are capable of coping with the enormous amount
of information. The data is brought into a unified format
which makes it easier to spot points of data loss in the sys-
tem.

All the counters are analyzed by a dedicated process and
then presented to the user in a simple panel, which hides
most of the complexity of the system, but gives access to
more detailed information if necessary. This system has
helped us to quickly find problematic network links, failing
read-out boards and front-ends and has improved the re-
sponse time from the time a problem occurs to being fixed.

REFERENCES

[1] Guido Haefeli et al., “TELL1 Specification for a common
read out board for LHCb”, IPHE Note 2003-02, LHCb Note
2003-007.

[2] C. Gaspar et al., “DIM, a Portable, Light Weight Package
for Information Publishing, Data Transfer and Inter-process
Communication”, Proc. of CHEP 2000, Padova.

[3] C. Gaspar, B. Franek, R. Jacobsson, S. Morlini, N. Neufeld,
and P. Vannerem, “An integrated experiment control system,
architecture, and benefits: The LHCb approach”, IEEE Trans.
Nucl. Sci., vol. 51, no. 1, pp. 513520, Jun. 2004.

[4] G. Barrand et al., “GAUDI - A software architecture and
framework for building LHCb data processing applications”,
Proc. of CHEP 2000, Padova.

[5] J. Garnier, N. Neufeld, and S.S. Cherukuwada, “Non-POSIX
File System for LHCb Online Event Handling”, Real Time
Conference (RT), 2010 17th IEEE-NPSS, p 1-4.

[6] Munin: “A networked resource monitoring tool that can help
analyze resource trends”, http://munin-monitoring.org/

MOPMN019 Proceedings of ICALEPCS2011, Grenoble, France

284C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view


