
MedAustron is a centre for ion-therapy and
research in currently under construction in
Austria. It features a synchrotron particle
accelerator for proton and carbon-ion
beams. This paper presents the
architecture and concepts for implementing
a procedure framework called ProShell.
Procedures to automate high level control
and analysis tasks for commissioning and
during operation are modelled with Petri-
Nets and user code is implemented with
C#. It must be possible to execute
procedures and monitor their execution
progress remotely. Procedures include
starting up devices and subsystems in a
controlled manner, configuring, operating
O(1000) devices and tuning their
operational settings using iterative
optimization algorithms. Device interfaces
must be extensible to accommodate yet
unanticipated functionalities. The framework
implements a template for procedure
specific graphical interfaces to access
device specific information such as
monitoring data. Procedures interact with
physical devices through proxy software
components that implement one of the
following interfaces: (1) state-less or (2)
state-driven device interface. Components
can extend these device interfaces
following an object-oriented single
inheritance scheme to provide augmented,
device-specific interfaces. As only two basic
device interfaces need to be defined at an
early project stage, devices can be
integrated gradually as commissioning
progresses. We present the architecture
and design of ProShell and explain the
programming model by giving the simple
example of the ion source spectrum
analysis procedure.

ProShell	
 -­‐	
 The	
 MedAustron	
 Accelerator	

Control	
 Procedure	
 Framework	

R. Moser1, A. B. Brett1, J. Dedič3, J. Gutleber2, M. Marchhart1, C. Torcato De Matos1, S. Sah3

1EBG MedAustron, Wiener Neustadt, Austria
2CERN, Geneva, Switzerland
3Cosylab, Ljubljana, Slovenia

Each procedure is executed in a
separate Procedure Context that acts
as a container to provide coordinated
access to devices and control system
services and manages the procedure
lifecycle. Each context manages the
following object separately (Figure 2):
• Procedure implements a specific
control or processing task and provides
a standardized interface to be controlled
by the Procedure Context.
• Procedure Lifecycle handles the
general lifecycle of the procedure that is
common to all procedures (Figure 4).
• Petri Net Engine is a workflow
engine that executes the procedure
specific workflow defined in a Petri Net
Modelling Language (PNML) file.
• DeviceCache allocates resources on
using the VAA driver and keeps a cache
of C# resource adapter objects.

ProShell is a framework to dynamically
load and execute procedures
implemented as C# classes. It provides
access to system, software and physical
devices for monitoring and control
purposes. These services are
accessible from ProShell through
service-specific Driver objects that are
used internally and are not directly
accessible from the procedures:
•  Virtual Accelerator Allocator (VAA)
allocates resources for exclusive usage
on behalf of user applications.
•  WinCC OA is a SCADA system that
acts as the main communication
backbone between user interfaces and
frontend controllers (FEC).
•  MAPS is a publisher subscriber to
forward measurements from FECs to
user interfaces.
•  Main Timing System (MTS)
generates events for beam generation
that are delivered to the frontend
controllers with a precision of 100ns.

MedAustron is an ion therapy and
research centre presently under
construction in Wiener Neustadt,
Austria. The facility features a
synchrotron-based accelerator with up
to 5 ion sources for protons, carbon ions
and possibly other light ions. It will
provide ion beams with energies up to
800MeV to 5 beam lines, one of which
is a rotating proton gantry.
The Procedure Shell Execution
Framework (ProShell) is a C#
application to automate high level
control and analysis tasks for
commissioning and during operation.
Each task called a procedure
implements a standardized procedure
interface and is deployed as .NET
assembly (shared objects).

INTRODUCTION	

ARCHITECTURE	

[1] M. Benedikt, A. Wrulich, “MedAustron—Project overview and
status”, Eur. Phys. J. Plus (2011) 126: 69.

[2] J. Billington et al., “The Petri Net Markup Language:
Concepts, Technology, and Tools”, Proc. ICATPN, 2003.

[3] J. Dedic et al., “Timing System for MedAustron Based on Off-
The-Shelf MRF Transport Layer”, Proc. IPAC 2011.

[4] P. Golonka, M. Gonzales-Berges, “Integrated Access Control
for PVSS-Based SCADA Systems at CERN”, Proc.
ICALEPCS, 2009.

[5] E. Gamma et al., “Design Patterns—Elements of Reusable
Object-Oriented Software”, Addison-Wesley, 1995.

[6] J. Gutleber et al., “The MedAustron Accelerator Control
System”, Proc. ICALEPCS, 2011.

BEAM	
 SPECTRUM	
 ANALYSIS	

PROCEDURE	
 CONTEXT	

REFERENCES	

ABSTRACT	

The ion source beam spectrum
analysis procedure detects the
particles types generated by a
specific ion source. Therefore a
current is applied to the bending
magnet. The generated field deflects
the particles in an angle depending on
the particle mass and the applied field.
The energy of the particles that hit the
following faraday cup is measured. Due
to correlation of current to particle type,
the generated particles can be detected
with peak detection algorithm on the
energy over current plot (Figure 5).

private void Configure(PetriNet petrinet,
 ITransition transition,
 Dictionary<IArc, Queue<IToken>> input,
 Dictionary<IArc, Queue<IToken>> output)
{
 List<CurrentToken> tokens =
 petrinet.GetTokens<CurrentToken>(input);
 if (tokens.Count == 1)
 {
 var cycleToken = (CurrentToken) token;
 _pcc.CurrentAqn.Subscribe(
 petrinet.GetPlace("positioned"),
 token[0].Current);
 _pcc.CurrentCcv.Value = token[0].Current;
 petrinet.GenerateTokens(output);
 }
}

Figure 8. conf transition that applies a setpoint and waits for it to
be reached by the power supply.

CONTACTS	

Integration with the main systems
(WinCC OA, MTS, VAA and MAPS) has
been concluded. First tests have been
carried out in the MedAustron test
column with the presented procedure
and generic procedures that execute
beam cycles emulating not-available
devices with WinCC OA scripts. These
tests have shown that generic tasks
such as allocation, data conversion and
validity checks can be encapsulated in
ProShell to provide a simplified
interface for procedures.

SUMMARY	

Name: Roland Moser
Organization: EBG MedAustron
Email: roland.moser@cern.ch
Phone: +41 22 76 78609
Website: http://www.ebgmedaustron.at

public override void OnEnable()
{
 _faradayCup.Move(true, 20);
 PetriNet net = Context.PetriNet;
 net.BindParameter("n",
 (uint)Currents.Cur.Count);
 IPlace place = net.GetPlace("conf");
 foreach (Tuple<double> current in Currents.Cur)
 {
 CurrentToken token = new CurrentToken()
 { Current = current.Item1 };
 place.AddInitialToken(token);
 }
 Context.PetriNet.Trigger();
}

Figure 7. Enable transition to move the faraday cup in and to
configure the Petri net.

Resources are made available through
adapter objects that shield procedures from
the underlying addressing and
communication specifics. Each adapter
owns a set of fields that implement the
IElement interface. Classes implementing
the IElement interface interact with drivers
to communicate with the front-end
controllers and (1) implement data type
conversion and (2) perform client-side
validity checks. They implement one of the
following interfaces:
• BasicDevice is a state-less front-end
device interface that provides a minimal set
of DPEs for monitoring.
• StateDrivenDevice (SDD) is a state-
driven front-end device interface that
extends the BasicDevice to provide
mechanisms for sending commands to
front-end controllers and for login to gain
exclusive access to a device.
ProShell also provides resource adapters to
control a set of SDDs concurrently through
a single virtual device:
• Working Set (WS) is a virtual device
that implements the SDD interface and
controls a set of SDDs.
• Virtual Accelerator (VAcc) controls a
set of Working Sets and subsequently a set
of devices. In addition a VAcc also contains
a dynamically assigned Main Timing
Generator that allows a procedure to emit
timing information for beam generation with
an accuracy of 100ns.

RESOURCES	

Figure 2. ProcedureContext managing the procedure and related objects

Figure 3. Class Hierarchy for resources adapters

Figure 1. ProShell Architecture

Figure 4. Procedure Context Lifecycle

Figure 5. Beam Spectrum Measurement Output

Figure 6. Ion source beam spectrum analysis procedure workflow

