Keyword: optics
Paper Title Other Keywords Page
MOP2WA04 Recent Results from the Wideband Feedback System Tests at the SPS and Future Plans feedback, kicker, coupling, controls 38
 
  • K.S.B. Li, H. Bartosik, M.S. Beck, E.R. Bjørsvik, W. Höfle, G. Kotzian, T.E. Levens, M. Schenk
    CERN, Geneva, Switzerland
  • J.E. Dusatko, J.D. Fox, C.H. Rivetta
    SLAC, Menlo Park, California, USA
  • M. Schenk
    EPFL, Lausanne, Switzerland
  • O. Turgut
    Stanford University, Stanford, California, USA
 
  A high bandwidth transverse feedback demonstrator system has been devised within the LARP framework in collaboration with SLAC for the LHC Injectors Upgrade (LIU) Project. The initial system targeted the Super Proton Synchrotron (SPS) at CERN to combat TMCI and electron cloud instabilities induced for bunches with bunch lengths at the 100 MHz scale. It features a very fast digital signal processing system running at up to 4~GS/s and high bandwidth kickers with a frequency reach of ultimately beyond 1~GHz. In recent years, the system has gradually been extended and now includes two stripline kickers for a total power of 1~kW delivering correction signals at frequencies of currently more than 700~MHz. This talk will cover recent studies using this demonstrator system to overcome TMCI limitations in the SPS. We will conclude with future plans and also briefly mention potential applications and requirements for larger machines such as the LHC or the HL-LHC.  
slides icon Slides MOP2WA04 [19.091 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-MOP2WA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP1WB03 Experimental Study of Beam Dynamics in the PIP-II MEBT Prototype rfq, cavity, emittance, simulation 54
 
  • A.V. Shemyakin, J.-P. Carneiro, B.M. Hanna, V.A. Lebedev, L.R. Prost, A. Saini, V.E. Scarpine
    Fermilab, Batavia, Illinois, USA
  • C.J. Richard
    NSCL, East Lansing, Michigan, USA
  • V.L. Sista
    BARC, Mumbai, India
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The Proton Improvement Plan, Stage Two (PIP-II) is a program of upgrades proposed for the Fermilab injection complex, which central part is an 800-MeV, 2-mA CW SRF linac. A prototype of the PIP-II linac front end called PIP-II Injector Test (PIP2IT) is being built at Fermilab. As of now, a 15-mA DC, 30-keV H ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1-MeV CW RFQ, followed by a 10-m Medium Energy Beam Transport (MEBT) have been assembled and commissioned. The MEBT bunch-by-bunch chopping system and the requirement of a low uncontrolled beam loss put stringent limitations on the beam envelope and its variation. Measurements of transverse and longitudinal beam dynamics in the MEBT were performed in the range of 1-10 mA of the RFQ beam current. Almost all measurements are made with 10 μs beam pulses in order to avoid damage to the beam line. This report presents measurements of the transverse optics with differential trajectories, reconstruction of the beam envelope with scrapers and an Allison emittance scanner, as well as bunch length measurements with a Fast Faraday Cup.
 
slides icon Slides MOP1WB03 [3.750 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-MOP1WB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP2WA01 Optical Stochastic Cooling Experiment at the Fermilab IOTA Ring undulator, electron, radiation, experiment 168
 
  • J.D. Jarvis, V.A. Lebedev, H. Piekarz, P. Piot, A.L. Romanov, J. Ruan
    Fermilab, Batavia, Illinois, USA
  • M.B. Andorf, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Beam cooling enables an increase of peak and average luminosities and significantly expands the discovery potential of colliders; therefore it is an indispensable component of any modern design. Optical Stochastic Cooling (OSC) is a high-bandwidth, beam-cooling technique that will advance the present state-of-the-art, stochastic cooling rate by more than three orders of magnitude. It is an enabling technology for next-generation, discovery-science machines at the energy and intensity frontiers including hadron and electron-ion colliders. This paper presents the status of our experimental effort to demonstrate OSC at the Integrable Optics Test Accelerator (IOTA) ring, a testbed for advanced beam-physics concepts and technologies that is currently being commissioned at Fermilab. Our recent efforts are centered on the development of an integrated design that is prepared for final engineering and fabrication. The paper also presents a comparison of theoretical calculations and numerical simulations of the pickup-undulator radiation and its interaction with electrons in the kicker-undulator.
 
slides icon Slides TUP2WA01 [20.009 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP2WA03 Studies of Capture and Flat-Bottom Losses in the SPS simulation, impedance, injection, beam-loading 180
 
  • M. Schwarz, H. Bartosik, E. Chapochnikova, A. Lasheen, J. Repond, H. Timko
    CERN, Geneva, Switzerland
 
  One of the strong limitations for reaching higher beam intensities in the SPS, the injector of the LHC at CERN, are particle losses at flat bottom that increase with beam intensity. In this paper, different sources of these losses are investigated for two available SPS optics, using both measurements and simulations. Part of the losses originate from the PS-to-SPS bunch-to-bucket transfer, because the PS bunches are rotated in longitudinal phase space before injection and do not completely fit into the SPS RF bucket. The injection losses due to different injected bunch distributions were analyzed. Furthermore, at high intensities the transient beam loading in the SPS has a strong impact, which is (partially) compensated by the LLRF system. The effect of the present and future upgraded one-turn delay feedback system and phase loop on flat-bottom losses was studied using the longitudinal tracking code BLonD. Finally, the total particle losses are also affected by limitations in the SPS momentum aperture, visible for higher RF capture voltages in optics with lower transition energy and higher dispersion.  
slides icon Slides TUP2WA03 [8.038 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP1WA03 IBS Near Transition Crossing in NICA Collider collider, emittance, lattice, focusing 252
 
  • S.A. Kostromin, A.O. Sidorin
    JINR, Dubna, Moscow Region, Russia
  • I.V. Gorelyshev
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • V.A. Lebedev
    Fermilab, Batavia, Illinois, USA
  • A.O. Sidorin
    Saint Petersburg State University, Saint Petersburg, Russia
 
  Intrabeam scattering (IBS) of charged particles in a particle beam results in an exchange of energy between different degrees of freedom. That results in an increase of average energy of particles in the beam frame and an increase of the 3D-emittance. The paper considers calculations of beam emittance growth rates for different options of NICA collider and IBS effects in close vicinity of the transition.  
slides icon Slides WEP1WA03 [1.774 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP1WA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO006 Overview of the CERN PSB-to-PS Transfer Line Optics Matching Studies in View of the LHC Injectors Upgrade Project emittance, operation, injection, quadrupole 272
 
  • V. Forte, S.C.P. Albright, W. Bartmann, G.P. Di Giovanni, M.A. Fraser, C. Heßler, A. Huschauer, A. Oeftiger
    CERN, Geneva, Switzerland
 
  At injection into the CERN Proton Synchrotron (PS) a significant horizontal emittance blow-up of the present high brightness beams for the LHC is observed. A partial contribution to this effect is suspected to be an important mismatch between the dispersion function in the transfer line from the PS Booster (PSB) and the ring itself. This mismatch will be unacceptable in view of the beam parameters requested by the LHC Injectors Upgrade (LIU) project with high longitudinal emittance and momentum spread. To deliver the requested beam parameters the PSB-to-PS transfer line will be upgraded and the optics in the line changed to improve the matching from all the four PSB rings. A re-matching campaign from the PSB ring 3 has been carried out to evaluate the impact of the present optics mismatch as a source of emittance growth both in simulations and measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO007 Multi-Particle Simulations of the Future CERN PSB Injection Process with Updated Linac4 Beam Performance injection, linac, emittance, simulation 278
 
  • V. Forte, C. Bracco, G.P. Di Giovanni, M.A. Fraser, A.M. Lombardi, B. Mikulec
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injectors Upgrade (LIU) project, the injection process in the CERN Proton Synchrotron Booster (PSB) will be renovated after the connection with the Linac4. A new H charge exchange injection system using a stripping foil is foreseen to increase the brightness of the stored beams and to provide high flexibility in terms of emittance tailoring at 160 MeV. Realistic multi-particle simulations of the future injection processes for high brightness beams (i.e. for the LHC) and high intensity beams (i.e. for the ISOLDE experiment) are presented in this paper. The simulations are based on the present performance of Linac4 and include scattering induced by the foil, space charge effects and compensation of the lattice perturbation introduced by the bumpers of the injection chicane.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO008 SPS Long Term Stability Studies in the Presence of Crab Cavities and High Order Multipoles multipole, cavity, luminosity, sextupole 284
 
  • A. Alekou, H. Bartosik, R. Calaga, M. Carlà, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • R.B. Appleby, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • R.B. Appleby
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  A local Crab Cavity (CC) scheme will recover the head-on collisions at the IP of the High Luminosity LHC (HL-LHC), which aims to increase the LHC luminosity by a factor of 3-10. The tight space constraints at the CC location result in axially non-symmetric cavity designs that introduce high order multipole CC components. The impact of these high order components on the long term stability of the beam in the SPS machine, where two prototype crab cavities are presently installed in the CERN SPS to perform tests with beam, is presented. Furthermore, the Dynamic Aperture is studied in the presence of the SPS errors. Future plans are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO011 Studies of Transverse Instabilities in the CERN SPS emittance, simulation, octupole, injection 291
 
  • M.S. Beck, H. Bartosik, M. Carlà, K.S.B. Li, G. Rumolo, M. Schenk
    CERN, Geneva, Switzerland
  • U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  In the framework of the LHC Injectors Upgrade (LIU), beams with about twice the intensity compared to the present values will have to be accelerated by the CERN Super Proton Synchrotron (SPS) and extracted towards the Large Hadron Collider (LHC). Machine studies with intensity higher than the nominal LHC beam have shown that coherent instabilities in both transverse planes may develop at injection energy, potentially becoming a limitation for the future high intensity operation. In particular, a transverse mode coupling instability is encountered in the vertical plane, the threshold of which can be sufficiently increased by changing the machine optics. In addition, a headtail instability of individual bunches is observed in the horizontal plane in multi-bunch operation, which requires stabilization by high chromaticity. The PyHEADTAIL code has been used to check if the present SPS impedance model reproduces the experimental observations. The instability growth rates have been studied for different machine optics configurations and different chromaticity settings. Other stabilizing mechanisms like tune spread from octupoles or the transverse damper have also been investigated.  
poster icon Poster WEP2PO011 [4.940 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)