

Hollow Electron-Lens Assisted Collimation and Plans for the LHC

FRANCI

D. Mirarchi, W. Fischer, X. Gu, H. Garcia Morales, A. Mereghetti, S. Redaelli, G. Stancari, J. Wagner

LHC 27 km

The University of Manchester

- I. LHC Collimation and HEL for HL-LHC?
- **II. Fermilab experience**
- III. Brookhaven experience
- IV. LHC plans
- V. Conclusions

I. LHC Collimation and HEL for HL-LHC?

- II. Fermilab experience
- III. Brookhaven experience
- **IV. LHC plans**
- V. Conclusions

LHC collimation system

LHC Collimation

CERN

Stored energy in 2018 physics fill

The University of Manchester

HL-LHC collimation upgrade baseline

Solid baseline to improve the passive nature of the system!

Any possibility for an active control of overpopulated beam tails?

D. Mirarchi, HB2018, 18th June 2018

The University of Manchester

Working principle: hollow electron beam surrounding the proton beam as additional hierarchy layer

CÊRN

D. Mirarchi, HB2018, 18th June 2018

I. LHC Collimation and HEL for HL-LHC?

- **II. Fermilab experience**
- III. Brookhaven experience
- **IV. LHC plans**
- V. Conclusions

Fermilab experience

• Fundamental requirement to avoid effects on the core: symmetric hollow e beam

MANCH

Two milestones achieved:

D. Mirarchi, HB2018, 18th June 2018

The University of Manchester

MANCHESTER

I. LHC Collimation and HEL for HL-LHC?

II. Fermilab experience

III. Brookhaven experience

IV. LHC plans

V. Conclusions

MANCH

The University of Mancheste

Brookhaven experience

Coll

- Similar test as done at Tevatron but with 100 Z GeV Ru and 13.6 Z GeV Au beams
- Two trains injected in each ring and HEL acting only in one of them (Yellow ring)
- Main observables: normalized bunch-by-bunch losses at collimators

Detailed tests and analysis on-going to probe effects on beam core and non linearities

- I. LHC Collimation and HEL for HL-LHC?
- **II. Fermilab experience**
- III. Brookhaven experience
- IV. LHC plans
- V. Conclusions

HEL for HL-LHC

Main design requirements:

Operational specifications

Integration in the LHC tunnel

Main requirements:

Available space

Main requirements:

- Available space
- Favorable optics conditions (i.e. round beams)

Main requirements:

- Available space
- Favorable optics conditions (i.e. round beams)
- Infrastructures (i.e. cryogenics, space for control electronics)

Beam instrumentation concepts based on experience in FNAL and BNL

The University of Manchester

LHC Collimation

Project

CERN

HEL Pro and Cons

Main operational gains:

- Loss spike free operation in the case of orbit jitter and bunch rotation due to crab cavities phase slip
- Increased of impact parameter on TCPs improving cleaning performance
- Tighter collimator settings to improve β^* reach

Possible drawback	Possible solution
Loss of Landau damping	Tuneable radius of e ⁻ beam
Detection of unusual loss rate	Witness bunch trains

- I. LHC Collimation and HEL for HL-LHC?
- II. Fermilab experience
- III. Brookhaven experience
- IV. LHC plans
- V. Conclusions

Conclusions

Solid collimation upgrade baseline for the HL-LHC

Recent assessment of large tail populations might require active halo control

• HEL identified as most promising solution, also in light of reliable operations in other machines

Recommended by different reviews, in the process of adding them to the baseline **Looking for collaborators** interested to contribute and make this possible

• The design of the HL-LHC lenses is mature and essentially ready for launching production

• Detailed operational scenarios and pulsing strategies being studied in simulations and experimentally

Thank you for your attention!

