Keyword: multipole
Paper Title Other Keywords Page
WEP2PO008 SPS Long Term Stability Studies in the Presence of Crab Cavities and High Order Multipoles cavity, optics, luminosity, sextupole 284
 
  • A. Alekou, H. Bartosik, R. Calaga, M. Carlà, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • R.B. Appleby, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • R.B. Appleby
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  A local Crab Cavity (CC) scheme will recover the head-on collisions at the IP of the High Luminosity LHC (HL-LHC), which aims to increase the LHC luminosity by a factor of 3-10. The tight space constraints at the CC location result in axially non-symmetric cavity designs that introduce high order multipole CC components. The impact of these high order components on the long term stability of the beam in the SPS machine, where two prototype crab cavities are presently installed in the CERN SPS to perform tests with beam, is presented. Furthermore, the Dynamic Aperture is studied in the presence of the SPS errors. Future plans are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WE03 BPM Technologies for Quadrupolar Moment Measurements emittance, pick-up, factory, electron 399
 
  • A. Sounas, M. Gąsior, T. Lefèvre
    CERN, Geneva, Switzerland
 
  Quadrupolar moment measurements based on electromagnetic pick-ups (PU), like BPMs, have attracted particular interest as non-intercepting diagnostics to determine the transverse beam size. Here, the second-order moment, which contains information about the beam size, is extracted from the BPM electrode signals. Despite the simplicity of the concept, quadrupololar measurements have always been challenging in practice. This is related to the fact that the quadrupolar moment constitutes only a very small part of the total PU signal, which is dominated by the contributions of beam intensity and position. In this study we discuss the limitations of absolute quadrupolar measurements if applying traditional BPM technologies, and we propose a new approach to efficiently overcome them via movable PUs. Moreover, we highlight the potential use of BPMs as an emittance measurement system during the energy ramp at synchrotrons by performing differential quadrupolar measurements, which show a remarkably higher accuracy than absolute measurements. Dedicated studies using different types of BPMs in the Large Hadron Collider (LHC) at CERN demonstrated promising results.  
slides icon Slides THA1WE03 [5.299 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA1WE03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)