

BPM Technologies for Quadrupolar Moment Measurements

Apostolos Sounas, Marek Gasior and Thibaut Lefevre

Beam Instrumentation Group (BI)

European Organization for Nuclear Research (CERN)

Acknowledgements to: J. Olexa, M. Wendt, G. Valentino, A. Mereghetti, S. Redalelli

HB2018

61st ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams

Daejeon, Korea, 17th – 22nd June 2018

- Introduction
- Problem Overview Fundamental Limitations
- New Approach based on Movable BPMs
- Preliminary Tests
- Differential Measurements
- Conclusion

Introduction

What is a Quadrupolar Pick-Up (PU)?

- an electromagnetic Pick-Up, e.g. a BPM
- measures the 2nd order term (quadrupolar moment) of the electrode signals.

$$U_{h1} \propto \frac{a}{2\pi} + \frac{1}{\rho} \frac{2\sin(a/2)}{\pi} x + \frac{1}{\rho^2} \frac{\sin(a)}{\pi} \left(\frac{\sigma_x^2 - \sigma_y^2 + x^2 - y^2}{\pi} \right) + \cdots$$

Quadrupolar Term

Introduction

What is a Quadrupolar Pick-Up (PU)?

- an electromagnetic Pick-Up, e.g. a BPM
- measures the 2nd order term (quadrupolar moment) of the electrode signals.

$$U_{h1} \propto \frac{a}{2\pi} + \frac{1}{\rho} \frac{2\sin(a/2)}{\pi} x + \frac{1}{\rho^2} \frac{\sin(a)}{\pi} \left(\sigma_x^2 - \sigma_y^2 + x^2 - y^2 \right) + \cdots$$

Quadrupolar Term

Motivation

Support Beam Size / Emittance measurements

- > Non-intercepting
- Existing PU technology (BPMs)
- Energy independent

Wire Scanners (WS)

- Partially distractive
- Limited by Intensity

Synchrotron Light Monitors (BSRT)

- Limitations during energy ramp
- Need WS for calibration

Standard Measurement Technique

Standard Measurement Technique

PU signals as a multipole expansion

$$\Sigma_{hor} \begin{bmatrix} U_{h1} = i_b [c_0 + c_1 D_x + c_2 Q + \cdots] \\ U_{h2} = i_b [c_0 - c_1 D_x + c_2 Q + \cdots] \end{bmatrix}$$

$$U_{v1} = i_b [c_0 + c_1 D_y - c_2 Q + \cdots]$$

$$U_{v2} = i_b [c_0 - c_1 D_y - c_2 Q + \cdots]$$

Cancel Dipolar moments

 $\Sigma_{hor} = 2i_b c_0 + 2i_b c_2 \boldsymbol{Q}$

 $\Sigma_{ver} = 2i_b c_0 - 2i_b c_2 \boldsymbol{Q}$

Cancel Monopole moment

$$\Sigma_{hor} - \Sigma_{ver} = 4i_b c_2 \boldsymbol{Q}$$

Normalize by intensity

$$R_q = \frac{\Sigma_{hor} - \Sigma_{ver}}{\Sigma_{hor} + \Sigma_{ver}} = \frac{c_2}{c_0} Q$$

Standard Measurement Technique

PU signals as a multipole expansion

$$\Sigma_{hor} \begin{bmatrix} U_{h1} = i_b [c_0 + c_1 D_x + c_2 Q + \cdots] \\ U_{h2} = i_b [c_0 - c_1 D_x + c_2 Q + \cdots] \end{bmatrix}$$

$$\sum_{ver} \begin{bmatrix} U_{v1} = i_b [c_0 + c_1 D_y - c_2 Q + \cdots] \\ U_{v2} = i_b [c_0 - c_1 D_y - c_2 Q + \cdots] \end{bmatrix}$$

Cancel Dipolar moments

 $\Sigma_{hor} = 2i_b c_0 + 2i_b c_2 \boldsymbol{Q}$

Cancel Monopole moment

$$\Sigma_{hor} - \Sigma_{ver} = 4i_b c_2 \boldsymbol{Q}$$

 $\Sigma_{ver} = 2i_b c_0 - 2i_b c_2 \boldsymbol{Q}$

Normalize by intensity

$$R_q = \frac{\Sigma_{hor} - \Sigma_{ver}}{\Sigma_{hor} + \Sigma_{ver}} = \frac{c_2}{c_0} \mathbf{Q}$$

Pretty straightforward... but very challenging!

Challenges (1)

Low Quadrupolar Sensitivity

Analytical 2D Case

$$U_{h1} \propto \frac{a}{2\pi} + \frac{1}{\rho} \frac{2\sin(a/2)}{\pi} x$$

+ $\frac{1}{\rho^2} \frac{\sin(a)}{\pi} (\sigma_x^2 - \sigma_y^2 + x^2 - y^2) + \cdots$

General Case

$$U_{h1} \propto c_0 + c_1 D_x + c_2 Q + \cdots$$
$$\boxed{\frac{c_2}{c_0} Q \propto (\sigma_{\text{eff}}/\rho)^2 \ll 1}$$

Quadrupolar moment constitutes only a *very small part* of the total BPM signal

Typical values: *few per milles*

Challenges (1)

Low Quadrupolar Sensitivity

Analytical 2D Case

$$U_{h1} \propto \frac{a}{2\pi} + \frac{1}{\rho} \frac{2\sin(a/2)}{\pi} x$$

+ $\left(\frac{1}{\rho^2} \frac{\sin(a)}{\pi} (\sigma_x^2 - \sigma_y^2 + x^2 - y^2) + \cdots\right)$

channel asymmetries

General Case

$$U_{h1} \propto c_0 + c_1 D_x + c_2 Q + \cdots$$
$$\boxed{\frac{c_2}{c_0} Q \propto (\sigma_{\text{eff}}/\rho)^2 \ll 1}$$

large offsets

21/06/2018

Challenges (1)

Low Quadrupolar Sensitivity

Analytical 2D Case

channel asymmetries

General Case

$$U_{h1} \propto c_0 + c_1 D_x + c_2 Q + \cdots$$
$$\boxed{\frac{c_2}{c_0} Q \propto (\sigma_{\text{eff}}/\rho)^2 \ll 1}$$

large offsets

21/06/2018

Challenges (2)

Parasitic Position Signal

Problem – Overview

Fundamental Limitations	Unfavourable Conditions		Destructive Measurement Effects
Low quadrupolar sensitivity $U_{h1} \propto c_0 + c_1 D_x + c_2 Q + \cdots$	asymmetries (electronics, cabling, geometrical)		Beam size information lost in large offsets
$c_2 Q \ll c_0$	noise (electronics)	\rightarrow	** Low resolution
Parasitic Position Signal $Q = \sigma_x^2 - \sigma_y^2 + x^2 - y^2$	off-centered beam		Beam size signal lost in parasitic position signal

** **Noise** from electronics may significantly affect the quadrupolar measurements. However, existing BPM acquisition systems typically achieve sufficient resolution. Example: $\sim 1 \mu m$ position resolution $\rightarrow \sim 0.01 mm^2$ quadrupolar resolution

Problem – Overview

Fundamental Limitations	Unfavourable Conditions	Destructive Measurement Effects
Low quadrupolar sensitivity $U_{h1} \propto c_0 + c_1 D_x + c_2 Q + \cdots$	asymmetries (electronics, cabling, geometrical)	Beam size information lost in large offsets
$c_2 Q \ll c_0$	noise (electronics)	Low resolution
Parasitic Position Signal $Q = \sigma_x^2 - \sigma_y^2 + x^2 - y^2$	off-centered beam	Beam size signal lost in parasitic position signal

** **Noise** from electronics may significantly affect the quadrupolar measurements. However, existing BPM acquisition systems typically achieve sufficient resolution. <u>Example</u>: $\sim 1\mu m$ position resolution $\rightarrow \sim 0.01 - 0.02mm^2$ quadrupolar resolution

Direct subtraction

Manipulate PU as a beam position monitor (BPM)

1. Measure the beam position

$$x_m = P\left(\frac{U_{h1} - U_{h2}}{U_{h1} + U_{h2}}\right) \qquad y_m = P\left(\frac{U_{\nu 1} - U_{\nu 2}}{U_{\nu 1} + U_{\nu 2}}\right)$$

$$Q_{\sigma,m} = Q - x_m^2 + y_m^2$$

Direct subtraction

Manipulate PU as a beam position monitor (BPM)

1. Measure the beam position

$$x_m = P\left(\frac{U_{h1} - U_{h2}}{U_{h1} + U_{h2}}\right) \qquad y_m = P\left(\frac{U_{\nu 1} - U_{\nu 2}}{U_{\nu 1} + U_{\nu 2}}\right)$$

Direct subtraction

Manipulate PU as a beam position monitor (BPM)

1. Measure the beam position, with certain accuracy

$$x_m = P\left(\frac{U_{h1} - U_{h2}}{U_{h1} + U_{h2}}\right) \qquad y_m = P\left(\frac{U_{v1} - U_{v2}}{U_{v1} + U_{v2}}\right)$$

$$Q_{\sigma,m} = Q - x_m^2 + y_m^2$$

Is this subtraction sufficient to cance
the position signal?

 V_1

Direct subtraction

Manipulate PU as a beam position monitor (BPM)

1. Measure the beam position, with certain accuracy

$$x_m = x + \Delta x$$
 $y_m = y + \Delta y$

$$Q_{\sigma,m} = Q - x_m^2 + y_m^2$$

Towards a Movable PU..

$\boldsymbol{v_1}$ Manipulate PU as a beam position monitor (BPM) 1. Measure the beam position, with certain accuracy $\sigma_{\rm v},\sigma_{\rm v}$ h_2 $x_m = x + \Delta x$ $y_m = y + \Delta y$ Remaining Error: 2. Subtract the parasitic signal $Q_{x,rem} \approx 2x\Delta x$ $Q_{\sigma m} = Q - x_m^2 + y_m^2$ V_2 V_1 Subtraction by Alignment (Movable PU) **Movable PU** (in both axes) 1. Measure the beam position, with certain accuracy σ_x, σ_y V $x_m = x + \Delta x$ $y_m = y + \Delta y$ Remaining Error: $Q_{x,rem} \approx \Delta x^2$ 2. Align PU according to (x_m, y_m) $x' \approx \Delta x$ $y' \approx \Delta y$ V_{2}

Direct subtraction

Direct subtraction (Fixed PU)

Example

Remaining parasitic signal considering offset, o, & scaling, a, errors in position measurement:

 $\Delta x = o + ax$

21/06/2018

Problem – Overview

Fundamental Limitations	Unfavourable Conditions	Destructive Measurement Effects	
Low quadrupolar sensitivity $U_{h1} \propto c_0 + c_1 D_x + c_2 Q + \cdots$	asymmetries (electronics, cabling,	Beam size information lost in large offsets	
$\boxed{c_2 Q \ll c_0}$	noise (electronics)	Low resolution **	
Parasitic Position Signal $Q = \sigma_x^2 - \sigma_y^2 + \boxed{x^2 - y^2}$	off-centered beam>	Beam size signal lost in parasitic position signal	
	Align PU the beam	with	
		movable PU	

****** Noise from electronics may significantly affect the quadrupolar measurements. However, existing BPM acquisition systems typically achieve sufficient resolution. <u>Example</u>: $\sim 1 \mu m$ position resolution $\rightarrow \sim 0.01 - 0.02 mm^2$ quadrupolar resolution

Problem – Overview

** Noise from electronics may significantly affect the quadrupolar measurements. However, existing BPM acquisition systems typically achieve sufficient resolution. <u>Example</u>: $\sim 1\mu m$ position resolution $\rightarrow \sim 0.01 - 0.02mm^2$ quadrupolar resolution

21/06/2018

Consider a movable PU, able to change the aperture

Consider some asymmetry between the Hor. & Ver. channels

$$\Sigma_h = \frac{a_h i_b (c_0 + c_2 Q)}{\Sigma_v = \frac{a_v i_b (c_0 - c_2 Q)}{\Delta_v c_0 - c_2 Q}}$$

Consider a movable PU, able to change the aperture

Consider some asymmetry between the Hor. & Ver. channels

$$\Sigma_h = \frac{a_h i_b (c_0 + c_2 Q)}{\Sigma_v = \frac{a_v i_b (c_0 - c_2 Q)}{\Delta_v (c_0 - c_2 Q)}}$$

Perform 2 measurements with different apertures

Experimental Setup: Collimator BPMs

- Dioded-based electronics (DOROS) high resolution (better than 1um for position measurements)
- BPM signals are processed separately
- Select a pair of Hor. –Ver. Collimators to form 4-electrodes PUs
- **4 PUs in total** by combining upstream/downstream collimator BPMs

- Main Axis: direct alignment using position readings
- Secondary Axis: quadrupolar measurements

$$Q = \sigma_x^2 - \sigma_y^2 + x^2 - y^2$$
During scans on the secondary axis

 $Q_h = Q_{h,0} - y^2$ Hor. collimator $Q_v = Q_{v,0} + x^2$ Ver. collimator

Alignment process on the secondary axis

- Main Axis: direct alignment using position readings
- Secondary Axis: quadrupolar measurements

$$Q = \sigma_x^2 - \sigma_y^2 + x^2 - y^2$$

During scans on the secondary axis

$$Q_h = Q_{h,0} - y^2$$
Hor. collimator

$$Q_v = Q_{v,0} + x^2$$
Ver. collimator

Alignment process on the secondary axis

Scan around beam center after alignment

21/06/2018

2nd phase: aperture scans + emittance blow-up Injection energy secondary axis g (450 *GeV*) Nominal values: ADT Ver. +ADT Hor. $-\beta_x = 165m$ blow-up l blow-up b $-\beta_y = 79m$ Collimator $-Q_{nom} = 0.47mm^2$ TCT.A4L5.B1 31 **1**1:52 12:02 main axis 11:47 I11:57 12:07 12:12 L Time (HH:MM)

21/06/2018

Last Point: Differential measurements

Last Point: Differential measurements

21/06/2018

Emittance Measurements During the Ramp

Absolute change on the geometric emittance

• Combine (at least) 2 BPMs with different beta functions

$$\Delta Q^{(1)} = \beta_x^{(1)} \Delta \varepsilon_x - \beta_y^{(1)} \Delta \varepsilon_y$$
$$\Delta Q^{(2)} = \beta_x^{(2)} \Delta \varepsilon_x - \beta_y^{(2)} \Delta \varepsilon_y$$

Summary

Quadrupolar Measurements

simple concept but very challenging in reality

Fundamental Limitations

- > Low quadrupolar sensitivity \rightarrow large offsets
- Parasitic Position Signal -> big errors when beam is displaced

Movable PUs

- Sufficiently cancel position signal (direct subtraction do not work for large beam displacements)
- Calibrate the measurements system via aperture scans

• Differential Measurements

- Use of existing BPM technologies
- Promising results during the energy ramp

Thank You for your attention!

Spare slides

2nd phase: <u>absolute</u> & differential measurements

	Qabs1 (mm²)	Qabs2 (mm²)	Qdiff1 (mm²)	Qabs3 (mm ²) Estimation**	Qabs3 (mm ²)	Diff. (mm²)
DH - UV	0.25	0.29	-1.09	-0.80	-0.87	0.07
DH - DV	0.14	0.14	-1.20	-1.07	-0.71	-0.36
UH - DV	0.54	0.55	-1.22	-0.68	-0.21	-0.47
UH - UV	0.64	0.71	-1.12	-0.41	-0.37	-0.04

 $^{**}Q_{3,\text{est}} = Q_2 + \Delta Q_1$

21/06/2018

of the reference gap, $g_{
m ref}$ 1.6 -g_{h,ref} error: 5um $g_{\rm ref} = 16mm$ 1.5 -g_{h,ref} error: 10um $Q_m (mm^2)$ 1.4 1.3 $Q = 1mm^2$ 1.2 1.1 exact 1 18 20 22 24 26 28 Jaw Gap g(mm)

Consider an error in the measurement

21/06/2018

What about Non-Linearities?

Active components may introduce offsets/ non-linear terms

$$0 = a_0 + a_1 I + a_2 I^2$$

d-Norm method is optimized to cancel linear asymmetries (in the whole channel)

21/06/2018

Further Tests

- Error of standard method dominated by linear asymmetry.
- Much smaller deviations using the d-Norm approach
- Further studies to understand the small discrepancies of d-Norm method

d-Norm Method: More Studies

- More samples
- Cover wide aperture range
- Reconstruct uncertainties behaviour

Identifying Uncertainty

21/06/2018

Identifying Uncertainty

21/06/2018

Identifying Uncertainty

Error of standard method dominated by linear asymmetry.

Much smaller deviations using d-Norm method

d-Norm Method – Modified

d-Norm Method – Modified

*M. Gasior, "Calibration of a non-linear beam position monitor electronics (...)", Proceedings of IBIC 2013

d-Norm Method – Modified

Consider two PUs at different, low dispersion, locations

$$Q^{(1)} = \beta_x^{(1)} \varepsilon_x - \beta_y^{(1)} \varepsilon_y$$
$$Q^{(2)} = \beta_x^{(2)} \varepsilon_x - \beta_y^{(2)} \varepsilon_y$$

The emittances can be derived by solving the above linear system