BPM Technologies for Quadrupolar Moment Measurements

Apostolos Sounas, Marek Gasior and Thibaut Lefevre Beam Instrumentation Group (BI) European Organization for Nuclear Research (CERN)

Acknowledgements to:
J. Olexa, M. Wendt, G. Valentino,
A. Mereghetti, S. Redalelli

HB2018
$61^{\text {st }}$ ICFA Advanced Beam Dynamics Workshop on
High-Intensity and High-Brightness Hadron Beams
Daejeon, Korea, $17^{\text {th }}-22^{\text {nd }}$ June 2018

Outline

- Introduction
- Problem Overview - Fundamental Limitations
- New Approach based on Movable BPMs
- Preliminary Tests
- Differential Measurements
- Conclusion

Introduction

What is a Quadrupolar Pick-Up (PU)?

- an electromagnetic Pick-Up, e.g. a BPM
- measures the $2^{\text {nd }}$ order term (quadrupolar moment) of the electrode signals.

$$
\begin{aligned}
U_{h 1} & \propto \frac{a}{2 \pi}+\frac{1}{\rho} \frac{2 \sin (a / 2)}{\pi} x \\
& +\frac{1}{\rho^{2}} \frac{\sin (a)}{\pi} \frac{\left(\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}\right)}{\text { Quadrupolar Term }}+\cdots
\end{aligned}
$$

Introduction

What is a Quadrupolar Pick-Up (PU)?

- an electromagnetic Pick-Up, e.g. a BPM
- measures the $2^{\text {nd }}$ order term (quadrupolar moment) of the electrode signals.

$$
\begin{aligned}
U_{h 1} & \propto \frac{a}{2 \pi}+\frac{1}{\rho} \frac{2 \sin (a / 2)}{\pi} x \\
& +\frac{1}{\rho^{2}} \frac{\sin (a)}{\pi} \frac{\left(\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}\right)}{\text { Quadrupolar Term }}+\cdots
\end{aligned}
$$

Motivation

Support Beam Size / Emittance measurements
> Non-intercepting
> Existing PU technology (BPMs)
$>$ Energy independent

Wire Scanners (WS)

- Partially distractive
- Limited by Intensity

Synchrotron Light Monitors (BSRT)

- Limitations during energy ramp
- Need WS for calibration

Standard Measurement Technique

PU signals as a multipole expansion

$$
\begin{aligned}
& U_{h 1}=i_{b}\left[c_{0}+c_{1} D_{x}+c_{2} \boldsymbol{Q}+\cdots\right] \\
& U_{h 2}=i_{b}\left[c_{0}-c_{1} D_{x}+c_{2} \boldsymbol{Q}+\cdots\right] \\
& U_{v 1}=i_{b}\left[c_{0}+c_{1} D_{y}-c_{2} \boldsymbol{Q}+\cdots\right] \\
& U_{v 2}=i_{b}\left[c_{0}-c_{1} D_{y}-c_{2} \boldsymbol{Q}+\cdots\right] \quad \text { High order terms }
\end{aligned}
$$

$$
\uparrow \quad \text { can be fairly neglected }
$$

Quadrupolar Term
$\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}$

Standard Measurement Technique

PU signals as a multipole expansion
$\Sigma_{\text {hor }}\left\{\begin{array}{l}U_{h 1}=i_{b}\left[c_{0}+c_{1} D_{x}+c_{2} \boldsymbol{Q}+\cdots\right] \\ U_{h 2}=i_{b}\left[c_{0}-c_{1} D_{x}+c_{2} \boldsymbol{Q}+\cdots\right]\end{array}\right.$
$\Sigma_{v e r}\left\{\begin{array}{l}U_{v 1}=i_{b}\left[c_{0}+c_{1} D_{y}-c_{2} \boldsymbol{Q}+\cdots\right] \\ U_{v 2}=i_{b}\left[c_{0}-c_{1} D_{y}-c_{2} \boldsymbol{Q}+\cdots\right]\end{array}\right.$

Cancel Dipolar moments Cancel Monopole moment

$$
\begin{gathered}
\Sigma_{\text {hor }}=2 i_{b} c_{0}+2 i_{b} c_{2} \boldsymbol{Q} \\
\Sigma_{v e r}=2 i_{b} c_{0}-2 i_{b} c_{2} \boldsymbol{Q}
\end{gathered} \left\lvert\, \begin{gathered}
\Sigma_{\text {hor }}-\Sigma_{v e r}=4 i_{b} c_{2} \boldsymbol{Q} \\
\text { Normalize by intensity }
\end{gathered} R_{q}=\frac{\Sigma_{\text {hor }}-\Sigma_{v e r}}{\Sigma_{\text {hor }}+\Sigma_{v e r}}=\frac{c_{2}}{c_{0}} \boldsymbol{Q} . ~ \$\right.
$$

Standard Measurement Technique

PU signals as a multipole expansion
$\Sigma_{\text {hor }}\left\{\begin{array}{l}U_{h 1}=i_{b}\left[c_{0}+c_{1} D_{x}+c_{2} \boldsymbol{Q}+\cdots\right] \\ U_{h 2}=i_{b}\left[c_{0}-c_{1} D_{x}+c_{2} \boldsymbol{Q}+\cdots\right]\end{array}\right.$
$\Sigma_{v e r}\left\{\begin{array}{l}U_{v 1}=i_{b}\left[c_{0}+c_{1} D_{y}-c_{2} \boldsymbol{Q}+\cdots\right] \\ U_{v 2}=i_{b}\left[c_{0}-c_{1} D_{y}-c_{2} \boldsymbol{Q}+\cdots\right]\end{array}\right.$

Cancel Dipolar moments Cancel Monopole moment

$$
\begin{gathered}
\Sigma_{\text {hor }}=2 i_{b} c_{0}+2 i_{b} c_{2} \boldsymbol{Q} \\
\Sigma_{v e r}=2 i_{b} c_{0}-2 i_{b} c_{2} \boldsymbol{Q}
\end{gathered} \left\lvert\, \begin{gathered}
\Sigma_{\text {hor }}-\Sigma_{v e r}=4 i_{b} c_{2} \boldsymbol{Q} \\
\text { Normalize by intensity }
\end{gathered} R_{q}=\frac{\Sigma_{\text {hor }}-\Sigma_{v e r}}{\Sigma_{\text {hor }}+\Sigma_{v e r}}=\frac{c_{2}}{c_{0}} \boldsymbol{Q} . ~ \$\right.
$$

Pretty straightforward... but very challenging!

Challenges (1)

Low Quadrupolar Sensitivity

Analytical 2D Case

General Case

$$
\begin{aligned}
U_{h 1} & \propto \frac{a}{2 \pi}+\frac{1}{\rho} \frac{2 \sin (a / 2)}{\pi} x \\
& +\frac{1}{\rho^{2}} \frac{\sin (a)}{\pi}\left(\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}\right)+\cdots
\end{aligned}
$$

$$
\begin{gathered}
U_{h 1} \propto c_{0}+c_{1} D_{x}+c_{2} Q+\cdots \\
\frac{c_{2}}{c_{0}} Q \propto\left(\sigma_{\text {eff }} / \rho\right)^{2} \ll 1
\end{gathered}
$$

Quadrupolar moment constitutes only a very small part of the total BPM signal

Typical values: few per milles

Challenges (1)

Low Quadrupolar Sensitivity

Analytical 2D Case

General Case

$$
\begin{aligned}
U_{h 1} & \propto \frac{a}{2 \pi}+\frac{1}{\rho} \frac{2 \sin (a / 2)}{\pi} x \\
& f \frac{1}{\rho^{2}} \frac{\sin (a)}{\pi}\left(\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}\right)+\cdots
\end{aligned}
$$

channel asymmetries $\xrightarrow{\text { low sensitivity }}$ large offsets

> ideal world symmetric channels $\Sigma_{\text {hor }}=2 i_{b} c_{0}+2 i_{b} c_{2} Q$ $\Sigma_{\text {ver }}=2 i_{b} c_{0}-2 i_{b} c_{2} Q$ \downarrow $Q_{m}=\frac{c_{0}}{c_{2}} \frac{\Sigma_{\text {hor }}-\Sigma_{\text {ver }}}{\Sigma_{\text {hor }}+\Sigma_{\text {ver }}}=Q$

$$
\begin{gathered}
\text { realistic case } \\
\text { small asymmetry } \\
\Sigma_{\text {hor }}=2 a_{h} i_{b} c_{0}+2 a_{h} i_{b} c_{2} Q \\
\Sigma_{\text {ver }}=2 a_{v} i_{b} c_{0}-2 a_{v} i_{b} c_{2} Q \\
\downarrow \\
Q_{m}=\frac{c_{0}}{c_{2}} \frac{\Sigma_{\text {hor }}-\Sigma_{\text {ver }}}{\Sigma_{\text {hor }}+\Sigma_{\text {ver }}} \approx Q+\stackrel{c_{0}}{c_{2}} \frac{\text { offset }}{a_{h}-a_{v}}
\end{gathered}
$$

Challenges (1)

Low Quadrupolar Sensitivity

Analytical 2D Case

$$
\begin{aligned}
U_{h 1} & \propto \frac{a}{2 \pi}+\frac{1}{\rho} \frac{2 \sin (a / 2)}{\pi} x \\
& +\frac{1}{\rho^{2}} \frac{\sin (a)}{\pi}\left(\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}\right)+\cdots
\end{aligned}
$$

General Case

$$
\begin{gathered}
U_{h 1} \propto c_{0}+c_{1} D_{x}+c_{2} Q+\cdots \\
\frac{c_{2}}{c_{0}} Q \propto\left(\sigma_{\text {eff }} / \rho\right)^{2} \ll 1
\end{gathered}
$$

$\xrightarrow{\text { channel asymmetries } \xrightarrow{\text { low sensitivity }} \text { large offsets }}$

Example: LHC BPMs

Quad. sensitivity (c_{2} / c_{0}) for different types of LHC BPMs

Error considering a cabling discrepancy in one channel

Challenges (2)

Parasitic Position Signal

$$
Q=\frac{\sigma_{x}^{2}-\sigma_{y}^{2}}{Q_{\sigma}}+\frac{x^{2}-y^{2}}{Q_{p}}
$$

Typical values in LHC PUs

$$
\begin{aligned}
& {[450 \mathrm{GeV}]}
\end{aligned} \rightarrow \quad Q_{\sigma} \sim 0.30-1.50 \mathrm{~mm}^{2} \mathrm{~m}^{2}-3.3 \mathrm{~mm}^{2}
$$

Even small beam displacements may result in large parasitic signal Q_{p}

Problem - Overview

Fundamental Limitations	Unfavourable Conditions	Destructive Measurement Effects
Low quadrupolar sensitivity $U_{h 1} \propto c_{0}+c_{1} D_{x}+c_{2} Q+\cdots$	asymmetries (electronics, cabling, \longrightarrow geometrical) noise (electronics) \longrightarrow	Beam size information lost in large offsets Low resolution ${ }^{* *}$
Parasitic Position Signal $Q=\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}$	off-centered beam \longrightarrow	Beam size signal lost in parasitic position signal

[^0]However, existing BPM acquisition systems typically achieve sufficient resolution.
Example: $\sim 1 \mu \mathrm{~m}$ position resolution $\rightarrow \sim 0.01 \mathrm{~mm}^{2}$ quadrupolar resolution

Problem - Overview

Fundamental Limitations	Unfavourable Conditions	Destructive Measurement Effects
Low quadrupolar sensitivity $U_{h 1} \propto c_{0}+c_{1} D_{x}+c_{2} Q+\cdots$	asymmetries (electronics, cabling, \longrightarrow geometrical) noise (electronics) \longrightarrow	Beam size information lost in large offsets Low resolution**
Parasitic Position Signal $Q=\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}$	off-centered beam \longrightarrow	Beam size signal lost in parasitic position signal

[^1]However, existing BPM acquisition systems typically achieve sufficient resolution.
Example: $\sim 1 \mu \mathrm{~m}$ position resolution $\rightarrow \sim 0.01-0.02 \mathrm{~mm}^{2}$ quadrupolar resolution

Subtract Position Signal

Direct subtraction

Manipulate PU as a beam position monitor (BPM)

1. Measure the beam position

$$
x_{m}=P\left(\frac{U_{h 1}-U_{h 2}}{U_{h 1}+U_{h 2}}\right) \quad y_{m}=P\left(\frac{U_{v 1}-U_{v 2}}{U_{v 1}+U_{v 2}}\right)
$$

2. Subtract the parasitic signal

$$
Q_{\sigma, m}=Q-x_{m}^{2}+y_{m}^{2}
$$

Subtract Position Signal

Direct subtraction

Manipulate PU as a beam position monitor (BPM)

1. Measure the beam position

$$
x_{m}=P\left(\frac{U_{h 1}-U_{h 2}}{U_{h 1}+U_{h 2}}\right) \quad y_{m}=P\left(\frac{U_{v 1}-U_{v 2}}{U_{v 1}+U_{v 2}}\right)
$$

2. Subtract the parasitic signal

$$
Q_{\sigma, m}=Q-x_{m}^{2}+y_{m}^{2}
$$

Is this subtraction sufficient to cancel the position signal?

Subtract Position Signal

Direct subtraction

Manipulate PU as a beam position monitor (BPM)

1. Measure the beam position, with certain accuracy

$$
x_{m}=P\left(\frac{U_{h 1}-U_{h 2}}{U_{h 1}+U_{h 2}}\right) \quad y_{m}=P\left(\frac{U_{v 1}-U_{v 2}}{U_{v 1}+U_{v 2}}\right)
$$

2. Subtract the parasitic signal

$$
Q_{\sigma, m}=Q-x_{m}^{2}+y_{m}^{2}
$$

Is this subtraction sufficient to cancel the position signal?

Subtract Position Signal

Direct subtraction

Manipulate PU as a beam position monitor (BPM)

1. Measure the beam position, with certain accuracy

$$
x_{m}=x+\Delta \boldsymbol{x} \quad y_{m}=y+\Delta \boldsymbol{y}
$$

2. Subtract the parasitic signal

$$
Q_{\sigma, m}=Q-x_{m}^{2}+y_{m}^{2}
$$

Towards a Movable PU..

Direct subtraction

Manipulate PU as a beam position monitor (BPM)

1. Measure the beam position, with certain accuracy

$$
x_{m}=x+\Delta x \quad y_{m}=y+\Delta y
$$

2. Subtract the parasitic signal

$$
Q_{\sigma, m}=Q-x_{m}^{2}+y_{m}^{2}
$$

Remaining Error:
 $$
Q_{x, r e m} \approx 2 x \Delta x
$$

Subtraction by Alignment (Movable PU)

1. Measure the beam position, with certain accuracy

$$
x_{m}=x+\Delta x \quad y_{m}=y+\Delta y
$$

2. Align PU according to $\left(x_{m}, y_{m}\right)$ $x^{\prime} \approx \Delta x$

$$
y^{\prime} \approx \Delta y
$$

$$
\begin{aligned}
& \text { Remaining Error: } \\
& Q_{x, \text { rem }} \approx \Delta x^{2}
\end{aligned}
$$

Towards a Movable PU..

Direct subtraction (Fixed PU)

Measure \& subtract beam position

Subtraction by Alignment (Movable PU)
Measure beam position
\& align PU

Remaining Error:
$\Omega x, x^{2}$

Example

Remaining parasitic signal considering offset, o, \& scaling, a, errors in position measurement:

$$
\Delta x=o+a x
$$

Problem - Overview

Fundamental Limitations	Unfavourable Conditions	Destructive Measurement Effects
Low quadrupolar sensitivity $\begin{gathered} U_{h 1} \propto c_{0}+c_{1} D_{x}+c_{2} Q+\cdots \\ c_{2} Q \ll c_{0} \end{gathered}$	asymmetries (electronics, cabling, geometrical) noise (electronics)	Beam size information lost in large offsets Low resolution
Parasitic Position Signal $Q=\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}$		

[^2]
Problem - Overview

$\left.\begin{array}{c|ll}\begin{array}{c}\text { Fundamental } \\ \text { Limitations }\end{array} & \begin{array}{c}\text { Unfavourable } \\ \text { Conditions }\end{array} & \begin{array}{c}\text { Destructive } \\ \text { Measurement Effects }\end{array} \\ \hline \begin{array}{l}\text { Low quadrupolar sensitivity } \\ U_{h 1} \propto c_{0}+c_{1} D_{x}+c_{2} Q+\cdots\end{array} & \begin{array}{l}\text { asymmetries } \\ \text { (electronics, cabling, } \\ \text { geometrical) } \\ \text { noise (electronics) }\end{array} & \longrightarrow \begin{array}{l}\text { Beam size information } \\ \text { lost in large offsets }\end{array} \\ \hline c_{2} Q<c_{0}\end{array} \quad \begin{array}{l}\text { Could we use movable PUs } \\ \text { to remove the offsets? }\end{array}\right\}$

[^3]
Aperture Scans

Consider a (theoretical) circular PU able to change its aperture ρ
$\Sigma_{h o r} \propto \frac{a}{2 \pi}+\frac{1}{c_{0}} \frac{\sin (a)}{\pi} Q+\cdots \quad c_{2} \quad\left(v_{2}\right.$

Aperture Scans

Aperture Scans

Aperture Scans

Aperture Scans

Consider a (theoretical) circular PU able to change its aperture ρ

$$
\Sigma_{h o r} \propto \frac{a}{2 \pi}+\frac{\frac{1}{\rho^{2}} \frac{\sin (a)}{\pi}}{c_{0}}
$$

Monopole \& Quadrupolar moments change differently w.r.t. to the aperture change
$\xrightarrow{\text { stable beam }}$
Calibrate PU system (e.g. electronics/ cabling)

Consider a pair of Hor. \& Ver. collimators

Experimental Setup

A New Approach: The d-Norm Method

Consider a movable PU, able to change the aperture

Consider some asymmetry between the Hor. \& Ver. channels

$$
\begin{aligned}
\Sigma_{h} & =a_{h} i_{b}\left(c_{0}+c_{2} Q\right) \\
\Sigma_{v} & =a_{v} i_{b}\left(c_{0}-c_{2} Q\right)
\end{aligned}
$$

A New Approach: The d-Norm Method

Consider a movable PU, able to change the aperture

Reference measurement

Consider some asymmetry between the Hor. \& Ver. channels

$$
\begin{aligned}
\Sigma_{h} & =a_{h} i_{b}\left(c_{0}+c_{2} Q\right) \\
\Sigma_{v} & =a_{v} i_{b}\left(c_{0}-c_{2} Q\right)
\end{aligned}
$$

Perform 2 measurements with different apertures

A New Approach: The d-Norm Method

Consider a movable PU, able to change the aperture

Reference measurement

Consider some asymmetry between the Hor. \& Ver. channels

$$
\begin{aligned}
\Sigma_{h} & =a_{h} i_{b}\left(c_{0}+c_{2} Q\right) \\
\Sigma_{v} & =a_{v} i_{b}\left(c_{0}-c_{2} Q\right)
\end{aligned}
$$

Perform 2 measurements with different apertures

$$
S_{h}=\frac{\Sigma_{h}}{\Sigma_{h, \text { ref }}}=\frac{i_{b}(r+Q)}{i_{b, \text { ref }}\left(r_{\text {ref }}+Q\right)}
$$

$$
S_{v}=\frac{\Sigma_{v}}{\Sigma_{v, \text { ref }}}=\frac{i_{b}(r-Q)}{i_{b, \text { ref }}\left(r_{\mathrm{ref}}-Q\right)}
$$

A New Approach: The d-Norm Method

Consider a movable PU, able to change the aperture

Reference measurement

Consider some asymmetry between the Hor. \& Ver. channels

$$
\begin{aligned}
\Sigma_{h} & =a_{h} i_{b}\left(c_{0}+c_{2} Q\right) \\
\Sigma_{v} & =a_{v} i_{b}\left(c_{0}-c_{2} Q\right)
\end{aligned}
$$

Perform 2 measurements with different apertures

$$
S_{h}=\frac{\Sigma_{h}}{\Sigma_{h, \text { ref }}}=\frac{i_{b}(r+Q)}{i_{b, \text { ref }}\left(r_{\text {ref }}+Q\right)} \quad S_{v}=\frac{\Sigma_{v}}{\Sigma_{v, \text { ref }}}=\frac{i_{b}(r-Q)}{i_{b, \text { ref }}\left(r_{\text {ref }}-Q\right)}
$$

$$
2^{\text {nd }} \text { normalization } \quad \downarrow \text { normalize intensity }
$$

$$
\mathrm{R}=\frac{S_{h}}{S_{v}}=\frac{r+Q}{r-Q} \frac{r_{\mathrm{ref}}-Q}{r_{\mathrm{ref}}+Q}
$$

A New Approach: The d-Norm Method

Consider a movable PU, able to change the aperture

Reference measurement

Consider some asymmetry between the Hor. \& Ver. channels

$$
\begin{aligned}
\Sigma_{h} & =a_{h} i_{b}\left(c_{0}+c_{2} Q\right) \\
\Sigma_{v} & =a_{v} i_{b}\left(c_{0}-c_{2} Q\right)
\end{aligned}
$$

Perform 2 measurements with different apertures

$$
S_{h}=\frac{\Sigma_{h}}{\Sigma_{h, \text { ref }}}=\frac{i_{b}(r+Q)}{i_{b, \text { ref }}\left(r_{\text {ref }}+Q\right)} \quad S_{v}=\frac{\Sigma_{v}}{\Sigma_{v, \text { ref }}}=\frac{i_{b}(r-Q)}{i_{b, \text { ref }}\left(r_{\text {ref }}-Q\right)}
$$

$2^{\text {nd }}$ normalization
normalize intensity

$$
\mathrm{R}=\frac{S_{h}}{S_{v}}=\frac{r+Q}{r-Q} \frac{r_{\mathrm{ref}}-Q}{r_{\mathrm{ref}}+Q}
$$

Q obtained by double-normalization (d-Norm)

$$
Q \approx \frac{r r_{r e f}}{r-r_{v, r e f}} \frac{1-R}{1+R}
$$

First Observations

Experimental Setup: Collimator BPMs

- Dioded-based electronics (DOROS) - high resolution (better than $1 u m$ for position measurements)
- BPM signals are processed separately
- Select a pair of Hor. -Ver. Collimators to form 4-electrodes PUs
- 4 PUs in total by combining upstream/downstream collimator BPMs

First Observations

$1^{\text {st }}$ phase: PU alignment

- Main Axis: direct alignment using position readings
- Secondary Axis: quadrupolar measurements

$$
Q=\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}
$$

During scans on the
secondary axis

$$
\begin{array}{ll}
Q_{h}=Q_{h, 0}-y^{2} & \text { Hor. collimator } \\
Q_{v}=Q_{v, 0}+x^{2} & \text { Ver. collimator }
\end{array}
$$

Alignment process on the secondary axis

First Observations

$1^{\text {st }}$ phase: PU alignment

- Main Axis: direct alignment using position readings
- Secondary Axis: quadrupolar measurements

$$
Q=\sigma_{x}^{2}-\sigma_{y}^{2}+x^{2}-y^{2}
$$

During scans on the secondary axis
$Q_{h}=Q_{h, 0}-y^{2} \quad$ Hor. collimator
$Q_{v}=Q_{v, 0}+x^{2} \quad$ Ver. collimator

Alignment process on the secondary axis

Scan around beam center after alignment

First Observations

$2^{\text {nd }}$ phase: aperture scans + emittance blow-up

Injection energy (450 GeV)

Nominal values:
$-\beta_{x}=165 m$
$-\beta_{y}=79 m$
$-Q_{\text {nom }}=0.47 m^{2}$

First Observations

$2^{\text {nd }}$ phase: aperture scans + emittance blow-up

Injection energy (450 GeV)

Nominal values:
$-\beta_{x}=165 m$
$-\beta_{y}=79 m$
$-Q_{\text {nom }}=0.47 m^{2}$

First Observations

$2^{\text {nd }}$ phase: aperture scans + emittance blow-up

Injection energy (450 GeV)

Nominal values:
$-\beta_{x}=165 m$
$-\beta_{y}=79 m$

- $Q_{\text {nom }}=0.47 m^{2}$

First Observations

$2^{\text {nd }}$ phase: aperture scans + emittance blow-up

Injection energy (450 GeV)

Nominal values:
$-\beta_{x}=165 m$
$-\beta_{y}=79 m$

- $Q_{\text {nom }}=0.47 m^{2}$

First Observations

$2^{\text {nd }}$ phase: aperture scans + emittance blow-up

Injection energy (450 GeV)

Nominal values:
$-\beta_{x}=165 m$
$-\beta_{y}=79 m$
$-Q_{\text {nom }}=0.47 m^{2}$

__ dHor-uVer
-=- uHor-uVer
-.- dHor-dVer
__uHor-dVer

First Observations

$2^{\text {nd }}$ phase: aperture scans + emittance blow-up

Injection energy (450 GeV)

Nominal values:
$-\beta_{x}=165 m$
$-\beta_{y}=79 m$
$-Q_{\text {nom }}=0.47 \mathrm{~mm}^{2}$

_ dHor-uVer
--= uHor-uVer
-.- dHor-dVer
__uHor-dVer

First Observations

$2^{\text {nd }}$ phase: aperture scans + emittance blow-up

Injection energy (450 GeV)

Nominal values:
$-\beta_{x}=165 m$
$-\beta_{y}=79 m$
$-Q_{\text {nom }}=0.47 m^{2}$

-_ dHor - uVer
--- uHor - uVer
-- dHor-dVer

- uHor-dVer

First Observations

$2^{\text {nd }}$ phase: aperture scans + emittance blow-up

Injection energy (450 GeV)

Nominal values:
$-\beta_{x}=165 m$
$-\beta_{y}=79 m$
$-Q_{\text {nom }}=0.47 m^{2}$

Last Point: Differential measurements

Promising differential measurements during PU alignment, during ADT blow-up

Last Point: Differential measurements

Promising differential measurements during PU alignment, during ADT blow-up

..and during the energy ramp

Emittance Measurements During the Ramp

12 BPMs all around LHC

Absolute change on the geometric emittance

- Combine (at least) 2 BPMs with different beta functions

$$
\begin{aligned}
& \Delta Q^{(1)}=\beta_{x}^{(1)} \Delta \varepsilon_{x}-\beta_{y}^{(1)} \Delta \varepsilon_{y} \\
& \Delta Q^{(2)}=\beta_{x}^{(2)} \Delta \varepsilon_{x}-\beta_{y}^{(2)} \Delta \varepsilon_{y}
\end{aligned}
$$

start squeezing

Summary

- Quadrupolar Measurements
> simple concept but very challenging in reality
- Fundamental Limitations
$>$ Low quadrupolar sensitivity \rightarrow large offsets
$>$ Parasitic Position Signal -> big errors when beam is displaced
- Movable PUs
$>$ Sufficiently cancel position signal (direct subtraction do not work for large beam displacements)
> Calibrate the measurements system via aperture scans
- Differential Measurements
> Use of existing BPM technologies
> Promising results during the energy ramp

Thank You for your attention!

Spare slides

Understand the Uncertainties

First Observations

$2^{\text {nd }}$ phase: absolute \& differential measurements

	Qabs1 $\left(\mathrm{mm}^{2}\right)$	Qabs2 $\left(\mathrm{mm}^{2}\right)$	Qdiff1 $\left(\mathrm{mm}^{2}\right)$	Qabs3 $\left(\mathrm{mm}^{2}\right)$ Estimation**	Qabs3 $\left(\mathrm{mm}^{2}\right)$	Diff. $\left(\mathrm{mm}^{2}\right)$
DH - UV	0.25	0.29	-1.09	-0.80	-0.87	0.07
DH - DV	0.14	0.14	-1.20	-1.07	-0.71	-0.36
UH - DV	0.54	0.55	-1.22	-0.68	-0.21	-0.47
UH - UV	0.64	0.71	-1.12	-0.41	-0.37	-0.04

First Observations

$2^{\text {nd }}$ phase: aperture scans + emittance blow-up

Injection energy (450 GeV)

Nominal values:
$-\beta_{x}=165 m$
$-\beta_{y}=79 m$
$-Q_{\text {nom }}=0.47 m^{2}$

- dHor-uVer
--- uHor-uVer
-.- dHor-dVer
- uHor-dVer

Aperture Measurement - Limitation?

Consider an error in the measurement of the reference gap, $g_{\text {ref }}$

Aperture Measurement - Limitation?

Consider an error in the measurement of the reference gap, $g_{\text {ref }}$

Aperture Measurement - Limitation?

Differential vs Absolute Error

Aperture Measurement - Limitation?

Differential vs Absolute Error

What about Non-Linearities?

Active components may introduce offsets/ non-linear terms

$$
O=a_{0}+a_{1} I+a_{2} I^{2}
$$

d-Norm method is optimized to cancel linear asymmetries (in the whole channel)
$O_{h}=a_{1} I_{h}+a_{2} I_{h}{ }^{2} \quad O_{v}=a_{1, v} I_{v}$

Further Tests

- More samples
- Cover wide aperture range
- Reconstruct uncertainties behaviour
- Error of standard method dominated by linear asymmetry.
- Much smaller deviations using the d-Norm approach
- Further studies to understand the small discrepancies of dNorm method

d-Norm Method: More Studies

- More samples
- Cover wide aperture range
- Reconstruct uncertainties behaviour

Error in differential aperture measurement

Error due to offset asymmetries

Identifying Uncertainty

Aperture measurement error (differential)

Identifying Uncertainty

Identifying Uncertainty

Additional overview via the "standard method"

Estimation assuming

 asymmetries:- $a_{0}=0.005$
- $a_{1}=0.02$
- $a_{2}=0.005$

Error of standard method dominated by linear asymmetry.

d-Norm Method - Modified

d-Norm Method - Modified

*M. Gasior, "Calibration of a non-linear beam position monitor electronics (...)", Proceedings of IBIC 2013

d-Norm Method - Modified

Emittance Measurement

Consider two PUs at different, low dispersion, locations

$$
\begin{aligned}
& Q^{(1)}=\beta_{x}^{(1)} \varepsilon_{x}-\beta_{y}^{(1)} \varepsilon_{y} \\
& Q^{(2)}=\beta_{x}^{(2)} \varepsilon_{x}-\beta_{y}^{(2)} \varepsilon_{y}
\end{aligned}
$$

The emittances can be derived by solving the above linear system

[^0]: ** Noise from electronics may significantly affect the quadrupolar measurements.

[^1]: ** Noise from electronics may significantly affect the quadrupolar measurements.

[^2]: ** Noise from electronics may significantly affect the quadrupolar measurements.
 However, existing BPM acquisition systems typically achieve sufficient resolution.
 Example: $\sim 1 \mu \mathrm{~m}$ position resolution $\rightarrow \sim 0.01-0.02 \mathrm{~mm}^{2}$ quadrupolar resolution

[^3]: ** Noise from electronics may significantly affect the quadrupolar measurements. However, existing BPM acquisition systems typically achieve sufficient resolution.
 Example: $\sim 1 \mu \mathrm{~m}$ position resolution $\rightarrow \sim 0.01-0.02 \mathrm{~mm}^{2}$ quadrupolar resolution

