PROSPECTS FOR THE USE OF PERMANENT MAGNETS IN FUTURE ACCELERATOR FACILITIES

J. Chavanne, G. Le Bec

Insertion Devices Laboratory The European Synchrotron Grenoble, France

CONTENT

- Generalities
- Permanent magnets (PM) in accelerators
 - Operated PM devices
 - R&D
- PM stability
- Summary

SCALE FACTORS

PM micro-motor PM DC motor

Asynchronous motor

Power plant generator

mm

Short period undulator

Lattice magnets

m

GEOMETRICAL SCALING

Small aperture magnets

- Compact PM devices
- Resistive devices less compact due to limitation in current density

PM MATERIALS

Stability

Material	Br [T]	Hc _i [A/m]
Sr Ferrite	0.2 - 0.42	150-320
NdFeB	1.45 - 1.05	900-3200
SmCo ₅	0.8 - 0.9	2000
Sm ₂ Co ₁₇	1.05 - 1.15	> 1500 - 1900

Practical materials for accelerator PM devices

PM IN ACCELERATORS

ESRF IDs

Insertion Devices

Present

"Superstrong PMQ", Takanori Mihara,

PM Mutlipoles for final focus in colliders

Lattice magnets

Fermilab recycler

INSERTION DEVICES (IDS)

Periodic PM arrays for the production of high brilliance X-ray beams

More than 95 % of IDs are PM based

- Field range: 0.1 to 3 T
- Period range : 10 mm to 300 mm
- Many ID types ٠
 - Helical undulators
 - **Revolver undulators**
 - Wigglers
 - Etc ...

ESRF revolver undulator

PETRA III PM Helical undulator

ESRF

ESRF 3.1 T PM Wiggler

IN-VACUUM UNDULATORS: SMALLER GAP, SMALLER PERIOD

Permanent magnets can be UHV compatible

- Needs coating: Nickel, Al IVD, TiN.
- Typical residual pressure ~ 10⁻⁹ mbar in operation
- PM materials: NdFeB, Sm₂Co₁₇

 $B = \alpha B_r \exp(-\pi gap / \lambda_0)$

Important international development of IVUs following success at SPRING 8 Minimum gap limited by effect on beam (beam losses)

CRYOGENIC PM UNDULATORS (CPMUS)

CPMU= IVU+ cryogenic cooling of PM arrays (*)

- Higher performance PM materials
- Higher stability
- Better vacuum
- NdFeB or PrFeB
- Liquid nitrogen or cryocooler
- Several devices in operation in different 3GLS

3rd CPMU under construction @ ESRF

```
PM material: Vacodym 131 DTP (PrFeB)
```

```
Br =1.62 T,| μ<sub>0</sub>Hc<sub>1</sub>|~ 7 T @ 80 K
```

```
Min. gap=4 mm
period 14.5 mm
B<sub>max</sub>=1.26 T
```

(*) SPRING 8 proposal : Phys. Rev. ST AB, Vol. 7, 050702 (2004)

IDS FOR XFEL

Example of large scale undulator production

J. Pflueger, XFEL

Undulator Assembly in DESY Hall 36

Three undulator lines

Parameter	Sase1/2	Sase 3
Period [mm]	40	68
# of 5 m segments	35*2	21
Total undulator length [m]	175 *2	105

J. Pflueger, XFEL

- 455 m of undulators
- 17 tons of NdFeB PM

HIGH GRADIENT PM QUADRUPOLES: LINKED TO LINEAR COLLIDER PROJECTS

Development of compact and tunable small aperture magnets

Y. Iwashita, EPAC 2006

ILC final focusing PM

Gradient 120 T/m Aperture 20 mm Tuning by 7 T/m steps

M. Modena, IPAC12

CLIC QD0 final focusing

Iron dominated, Coils + PM Gradient 525 T/m Aperture 8.25 mm Tuning range 80 %

Specific requirement @ CLIC : low power to air

PM quadrupoles type 1

Iron dominated, PM Gradient 60.4 - 15 T/m Aperture 27.2 mm Tuning range 75%

PM quadrupoles type 2

Iron dominated, PM Gradient 43.4 - 3.5 T/m Aperture 27.6 mm Tuning range 80%

B.. Shepherd, CLIC workshop 2014

B.Shepherd, Daresbury, IPAC 2012

42 000 units needed

OTHER PM DEVICES IN ACCELERATORS

Canted undulators in 3GLS

- Angular separation of undulator beam in same straight section
- 3 small compensated PM dipoles
- up to 5.5 mrad angle @ 6 GeV
- PM solution -> compactness

ESRF canting magnet

SWISSFEL

R. Ganter, FEL2012

Phase shifters for FELs

- Compactness
- Remote gap control

I. Moya ,Linac 2012

FERMILAB RECYCLER: PM AS LATTICE MAGNETS

Recycler

Credit: Fermilab

- Circumference : 3.3 km
- ~480 magnets
- PM material: Strontium ferrite
- Fixed low field magnets
- Passive temperature compensation
- More than 10 years operation

Strontium ferrite block

quadrupole

Combined

quadrupole

Dipole

Credit: Fermilab

- 1- moving part(s) of PM structure
 - Can be 100 % field variation (IDs)
 - Magnetic forces/torques can be significant
 - Need stiff guiding assembly
 - PMQ magnetic axis stability versus field strength can be an issue
 - Reliability of motion control (encoders)
 - Cost of mechanical structure

ESRF ID

Adjustable PMQ, Y.Iwashita, Tokyo U.

- 2- Mixed PMs and coils
 - Reduced coil efficiency with PM inside magnetic circuit
 - PM block = air gap for coil
 - Field variation: few percent of nominal

DIFFRACTION LIMITED STORAGE RINGS (DLSR)

Several facilities with upgrade projects

The European Synchrotron

BENDING MAGNETS IN DLSR

The European Synchrotron | ESRF

Quadrupole gradient primarily increased with reduction of aperture Mostly demanding for upgrade projects (has to cope with existing cell length)

Example of ESRF dipole magnets in present lattice

0.85 T BM

Power/ dipole: 10 kW 64+1 magnets 25 years operation Procurement: 2.3 MEuros Running cost: 6.3 MEuros

(Updated costs to present)

ESRF II: running cost over 15 years has to be evaluated

ESRF NEW LATTICE : PM DIPOLE WITH LONGITUDINAL GRADIENT (DL)

Page 19 | IPAC'14 | 15-20 June 2014 | J. Chavanne

The European Synchrotron

HIGH GRADIENT PM QUADRUPOLE: R&D @ ESRF

Quadrupoles with limited field variation $(\pm 2 \%)$

Design of resistive version completed

First PM prototype as R&D subject

- simple hybrid structure with rectangular magnets
- Aperture radius 12 mm
- Dedicated pole shape
- Gradient ~ 85 T/m
- length 230 mm
- 30 kg
- no field variation for this version

Under assembly To be measured & tuned

10 years

100 years

0.082

0.105

The European Synchrotron | ESRF

smaller

TIME STABILITY (CONT.)

Pre-stabilization: increase temporarily magnetic viscosity

The European Synchrotron

ESRF

TEMPERATURE VARIATIONS

PM materials are sensitive to temperature variations

- Can be compensated if PM device has remote tuning capacity
 - Fixed field devices
 - Use of a passive correction with special Fe-Ni alloys
 - Low curie temperature (40 ~ 100 deg C)
 - Flux shunt approach
 - dB/B < 10⁻⁵/C after compensation

- Undulators damaged by radiation in several facilities
 - ESRF, APS, PETRA III
 - important studies done at SPRING8 (T. Bizen) and Cornell (A.B. Temnykh)
- Effect similar to that of a thermal partial demagnetization
 - Magnetization recovered after re-magnetization
 - Concept of thermal spikes in magnet material, likely due to high energy photoneutrons

Sm2Co17/NdFeB materials in IDs

- Sm₂C0₁₇ has the highest resistance to radiation induced demagnetization
- Thermally stabilized high coercivity (~ 2800 kA/m) NdFeB can be similar to Sm₂C0₁₇
- Similar observation with "cryocooled" NdFeB (CPMUs)
- High dependence on the working points (H,M) in magnet

Process defined by coercivity of the PM material Hc_J and related temperature coefficient

RADIATION DAMAGES (CONT.): IMPORTANCE OF 3D SIMULATION

Example: undulator closed on narrow chamber

Assume 4.0 e12 electrons lost on taper ~ 1 year operation

Software simulations with FLUKA (<u>http://www.fluka.org/</u>)

Use of PM devices in present accelerators

- Specialized devices
 - Compact: IDs, PMQs
 - No other simple alternative
 - Energy saving not the primary target
- Low cost full PM based ring @ Fermilab

Use of PM devices in future accelerators

- Specialized devices as now
- Energy saving will become an important issue
 - Colliders
 - PM quadrupoles for low heat to air
 - High gradient PMQ with field variation at IP
 - DLSRs
 - PM technology still in direct competition with resistive technology
 - Seems advantageous for fixed field devices (BMs)
 - Possibly interesting for quadrupoles with limited field variation

Stability of PM devices in accelerators

• Time stability

- Very small decay vs time
- Can be mitigated with pre-aging methods

Temperature stability

- Effect needs to be compensated
- Active Field variation
- Passive method

Radiation damages

- Significant progress in understanding various mechanisms
- · Further studies probably needed
- central role of coercivity
- Availability of accurate simulation tools

Thank you

4.4316KJ

