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SCALE FACTORS 
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mm m 

PM micro-motor PM DC motor Asynchronous motor Power plant generator 

PM: Permanent Magnet 

Short period undulator Lattice magnets 



GEOMETRICAL SCALING 
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Scale factor k 
B=B0 B1=B0 

Scale factor k 
B=B0 B1= kB0 

Magnet block 

Same current density 

coil 

Small aperture magnets 
•  Compact PM devices 
•  Resistive devices  less compact due to limitation in current density  
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PM MATERIALS 
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Material Br [T]  Hcj [A/m] 
Sr Ferrite 0.2 - 0.42 150- 320 
NdFeB 1.45 – 1.05 900- 3200 
SmCo5 0.8 - 0.9 2000 
Sm2Co17 1.05 - 1.15 > 1500 - 1900 

Field performance 

Stability 

B(H)=µo (H+M(H)) 

Practical materials for  accelerator PM devices 
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PM IN ACCELERATORS   
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ESRF IDs 

PM in accelerators 

“Superstrong PMQ”, Takanori Mihara, 

Fermilab recycler 

Insertion Devices 
PM Mutlipoles for final focus in colliders 

Lattice magnets 

Present 

Future 

Linear colliders 

DLSRs 



INSERTION DEVICES (IDS) 
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Periodic PM arrays for the production of high brilliance X-ray beams 

Undulator peak field	



B !!Br exp("" gap / #0 )

p.m material	
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Technology	



undulator	


period	



ESRF 3.1 T PM Wiggler 

More than 95 % of IDs are PM based 
 
•  Field range: 0.1 to 3 T 
•  Period range : 10 mm to 300 mm 
•  Many ID types 

•  Helical undulators 
•  Revolver undulators 
•  Wigglers 
•  Etc .. 

PETRA III PM Helical undulator 

ESRF revolver undulator 
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IN-VACUUM UNDULATORS: SMALLER GAP, SMALLER PERIOD 
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Vacuum chamber 

PM array 

Min. gap ~ 10 mm Min. gap ~ 4 mm 

Permanent magnets can be UHV compatible 
•  Needs coating: Nickel, Al IVD, TiN. 
•  Typical residual pressure ~ 10-9 mbar in operation 
•  PM materials: NdFeB, Sm2Co17 

ga
p 

ga
p 

Important international development of IVUs following success at SPRING 8 
Minimum gap limited by effect  on beam (beam losses) 

Period: 14~ 28 mm Period: 32~ 70 mm 

B =! Br exp("# gap / $0 )



CRYOGENIC PM UNDULATORS (CPMUS) 
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CPMU= IVU+ cryogenic cooling of PM arrays (*) 
 
•  Higher performance PM materials  
•  Higher stability 
•  Better vacuum 
•  NdFeB or PrFeB 
•  Liquid nitrogen or cryocooler 
•  Several devices in operation in different 3GLS 
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PM material
VACODYM 131 DTP

3rd CPMU  under construction @ ESRF 
 
PM material: Vacodym 131 DTP  (PrFeB) 
 

Br =1.62 T,| µ0HcJ|~ 7 T  @ 80 K 
 
Min. gap=4 mm 
period 14.5 mm 
Bmax=1.26 T 

(*)  SPRING 8 proposal : Phys. Rev. ST  AB,Vol. 7, 050702 (2004)	





IDS FOR XFEL 
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Undulator Assembly in DESY Hall 36  

20 ton Crane 

 Measurement Labs 

Assembly Area 

Delivery Gate 

Segments waiting 
for Magnetic 
Measurements 
 

Test Area 

Segments 
„Ready  
for Installation“ 
 

J. Pflueger, XFEL 

J. Pflueger, XFEL 

Three undulator lines 

Parameter Sase1/2  Sase 3 

Period [mm] 40 68 

# of 5 m segments 35*2 21 

Total undulator length [m] 175 *2 105 
•   455 m of undulators 
•   17 tons of NdFeB PM 

Example of large scale undulator production 



HIGH GRADIENT PM QUADRUPOLES: LINKED TO LINEAR COLLIDER PROJECTS 
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Y. Iwashita, EPAC 2006 

ILC final focusing 
PM 
Gradient 120 T/m 
Aperture 20 mm 
Tuning by 7 T/m steps  

CLIC QD0 final focusing 
Iron dominated, Coils + PM 
Gradient 525 T/m 
Aperture 8.25 mm 
Tuning range 80 % 

M. Modena,  IPAC12 

Development of compact and tunable small aperture magnets 



PM QUADRUPOLES FOR THE CLIC DRIVE BEAM 

Page 11 l IPAC'14 l 15-20 June 2014 l J. Chavanne 

PM quadrupoles type 1 
 
Iron dominated, PM 
Gradient 60.4 - 15  T/m 
Aperture 27.2 mm 
Tuning range 75% 

B.Shepherd, Daresbury, IPAC 2012  

PM quadrupoles type 2 
 
Iron dominated, PM 
Gradient 43.4 - 3.5 T/m 
Aperture 27.6 mm 
Tuning range 80% 

B.. Shepherd, CLIC workshop 2014 

42 000 units needed 

Specific requirement @ CLIC : low power to air 



OTHER PM DEVICES IN ACCELERATORS 
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Canted undulators in 3GLS 
 

•  Angular separation of undulator beam in same 
straight section  

•   3 small compensated  PM dipoles 
•  up to 5.5 mrad angle @ 6 GeV 
•  PM solution -> compactness 

•  Phase shifters for FELs 

•  Compactness 
•  Remote gap control 

ESRF canting magnet 

I. Moya ,Linac 2012 

XFEL SWISSFEL 

R. Ganter, FEL2012 



FERMILAB RECYCLER: PM AS LATTICE MAGNETS 
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Recycler 

Main injector 

Strontium ferrite 
block 

quadrupole 

Credit: Fermilab 

Combined 
Dipole 
quadrupole 

•  Circumference : 3.3 km 
•  ~480  magnets  
•  PM material: Strontium ferrite 
•  Fixed low field magnets 
•  Passive temperature compensation 
•  More than 10 years operation 

Credit: Fermilab 



 FIELD VARIATION WITH PM DEVICES 
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1- moving part(s) of  PM structure 
 
•  Can be 100 % field variation ( IDs) 
•  Magnetic forces/torques  can be significant 
•  Need stiff guiding assembly  
•  PMQ magnetic axis stability versus field strength 

can be an issue 
•  Reliability of motion control (encoders) 
•  Cost of mechanical structure  

 

2- Mixed PMs and coils 
 
•  Reduced coil efficiency with PM inside magnetic 

circuit 
•  PM block = air gap for coil 

•  Field variation:  few percent of nominal 

  
 

ESRF ID 

Adjustable PMQ, Y.Iwashita, Tokyo U.  



DIFFRACTION LIMITED STORAGE RINGS (DLSR) 
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3GLS 

DLSR 

MAX IV 

Two green-field facilities 
 under construction 
Electron beam emittance 
0.25 - 0.28 nm.rad 
 

Several  facilities with upgrade projects 

Electron beam emittance 
1 – 4 nm.rad 

New lattice: 7BA 
 
Electron beam emittance 
0.08 ~ 0.15 nmrad 

New magnets 

Sirius, brazil 

ESRF 
APS  
SPRING8 
 
 DBA lattices 



BENDING MAGNETS IN DLSR 
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Spring8 II

Red=DQ: Combined dipole quadrupole 
Blue=DL: Dipole with longitudinal gradient 
Black= Normal Dipole 3GLS Cloud 



QUADRUPOLE MAGNETS IN DLSRS 
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From Green field 

Upgrade of existing facilities 

Quadrupole gradient primarily increased with reduction of aperture 
Mostly demanding for upgrade projects ( has to cope with existing cell length) 



FIXED FIELD MAGNETS: BENDING MAGNETS 
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Power/ dipole: 10 kW 
64+1 magnets 
25 years operation 

Procurement: 2.3 MEuros 
Running cost: 6.3 MEuros  
 
(Updated costs to present) 

Example of ESRF dipole magnets in present lattice 
0.85 T BM 

ESRF II: running cost over 15 years has to be evaluated 

0.00 
10.00 
20.00 
30.00 
40.00 
50.00 
60.00 
70.00 
80.00 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
(*) 

€/MWh 

Year 

ESRF Electricity: Average cost  

 Total 
(€/MWh) 



ESRF NEW LATTICE :PM DIPOLE WITH LONGITUDINAL GRADIENT (DL) 
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resistive PM 

Length[m] 1.785 1.785 

Weight [kg] 1200 380 

Power [kw] 1.3 0 

# units 128 128 

•  PM material 
•  Sm2Co17 
•  Strontium Ferrite 

•  No remote field tuning 
•  Passive temperature compensation 

PM resistive 

€ resistive 

PM 

time 

Procurement 
cost 

Running cost 

•  Sirius has PM super bent 



HIGH GRADIENT PM QUADRUPOLE: R&D @ ESRF 
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First  PM prototype as R&D subject 
•  simple hybrid structure with rectangular magnets 
•  Aperture radius 12 mm 
•  Dedicated pole shape 
•  Gradient ~ 85 T/m 
•  length 230 mm 
•  30 kg 
•  no field variation for this version  

Under assembly 
To be measured 
& tuned 
 

21
0 

m
m

 

160 mm 

Quadrupoles with limited field variation (± 2 %) 
•  Design of resistive version completed       



MAGNETIC STABILITY: TIME STABILITY 
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Permanent magnets : metastable energy state 
Slow demagnetization vs time due to thermal activation 

Constant temperature 
Constant working point in PM 

Ln(t) 

M 

Magnetic viscosity 

Logarithm decay observed on all PM materials 

Magnet tests at Fermilab: 
 

Number of days since 
magnetization 

 field  Loss [%] 

10 days 0.023  

1 year 0.059 

10 years 0.082 

100 years 0.105 

Material Sr Ferrite 

Magnetic viscosity for 
NdFeb & Sm2Co17 
can be significantly 
smaller 



TIME STABILITY (CONT. ) 
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Pre-stabilization: increase  temporarily magnetic viscosity 

Ln(t) 

M 

 with temperature 

∆T 

∆H 

 with  field 

Remove substantial part  
of decay from the 
beginning 



TEMPERATURE VARIATIONS 
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Material cfBr [%/C] 
Sr Ferrite -0.2 

NdFeB -0.1 

SmCo5 -0.04 

Sm2Co17 -0.03 

PM materials are sensitive to temperature variations 
 
•  Can be compensated if PM device has remote tuning capacity 

•  Fixed field devices 
 

•  Use of a passive correction with special Fe-Ni alloys  
•  Low curie temperature ( 40 ~ 100 deg C) 
•  Flux shunt approach 
•  dB/B < 10-5/C after compensation 

shunt 

PM 



RADIATION DAMAGES 
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•  Undulators damaged by radiation in several facilities 
 

•  ESRF, APS, PETRA III 
•  important studies  done at SPRING8 (T. Bizen) and Cornell (A.B. Temnykh) 
 

•  Effect similar to that of a thermal partial demagnetization 
•  Magnetization recovered after re-magnetization 
•  Concept of thermal spikes  in magnet material, likely  due to high energy  photoneutrons 

Sm2Co17/NdFeB materials in IDs 
 
•  Sm2C017 has the highest resistance to radiation induced demagnetization 
•  Thermally stabilized high coercivity ( ~ 2800 kA/m) NdFeB can be similar to Sm2C017 
•  Similar observation with “cryocooled” NdFeB (CPMUs) 
•  High dependence on the working points (H,M) in magnet 

Process defined by coercivity of the PM  material  
 HcJ and related temperature coefficient 



RADIATION DAMAGES (CONT.): IMPORTANCE OF 3D SIMULATION 
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Software simulations with FLUKA (http://www.fluka.org/) 
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SUMMARY/CONCLUSION 
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Use of PM devices in present accelerators 
 
•  Specialized devices 

•  Compact:  IDs, PMQs 
•  No other simple alternative 
•  Energy saving not the primary target 

•  Low cost full PM based ring @ Fermilab 

Use of PM devices in future accelerators 
 
•  Specialized devices as now  
•  Energy saving will become an important issue 

•  Colliders 
•  PM quadrupoles for low heat to air 
•  High gradient PMQ with field variation at IP 

•  DLSRs  
•  PM  technology still in direct competition with resistive technology 
•  Seems advantageous for fixed field devices ( BMs) 
•  Possibly interesting for quadrupoles with limited field variation 



SUMMARY/CONCLUSION (CONT.) 
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Stability of PM devices in accelerators 
 
•  Time stability 

•  Very small decay vs time 
•  Can be mitigated with pre-aging  methods 

•  Temperature stability 
•  Effect needs to be compensated 
•  Active Field variation 
•  Passive method 

•  Radiation damages 
•  Significant progress in understanding various mechanisms 
•  Further studies probably needed 
•  central role of coercivity   
•  Availability of accurate simulation tools 
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Thank you 


