Keyword: shielding
Paper Title Other Keywords Page
MOOBB03 An Alternative 1D Model for CSR with Chamber Shielding impedance, radiation, vacuum, synchrotron 52
 
  • D. Zhou
    KEK, Ibaraki, Japan
 
  An alternative 1D model for modeling the longitudinal coherent synchrotron radiation (CSR) impedance is proposed. The code CSRZ* is used to calculate the CSR impedance with rectangular chamber shielding. Along the beam orbit, which may be formed by multi bends interleaved with drifts, the vacuum chamber is sliced into a series of segments. The low-frequency CSR impedance for each segment, in this case chamber shielding is significant, is obtained by numerical calculations. The high-frequency CSR impedance, in this case chamber shielding is negligible, is estimated by an analytical model**. The wake kick at each segment is computed via inverse Fourier transform of the impedance convolved the the beam spectrum. The most attractive merit of the method for CSR modeling lies in taking into account the realistic chamber shielding.
* D. Zhou, et al., To be published in Jpn. J. Appl. Phys.
** M. Borland, Phys. Rev. ST Accel. Beams 4, 070701 (2001).
 
slides icon Slides MOOBB03 [1.856 MB]  
 
MOPPC037 Muon Collider Detector Backgrounds collider, background, electron, simulation 211
 
  • M.A.C. Cummings, S.A. Kahn
    Muons, Inc, Batavia, USA
  • D. Hedin
    Northern Illinois University, DeKalb, Illinois, USA
  • J.F. Kozminski
    Lewis University, Romeoville, Illinois, USA
 
  Funding: Supported in part by SBIR Grant 4738 · 10SC05447
Technological innovations in recent years have revived interest in muon colliders as the next generation energy frontier machine. Advances in muon cooling technology will make the focussing and acceleration of muons to TeV energies possible. The biggest challenge for muon colliders is that muons decay, but it is possible to build a large muon collider as a circular machine, even at multi-TeV energies, due to the greatly reduced synchrotron radiation expected from muons compared to electrons. The challenge for the detectors in such machines is overcoming the large backgrounds from muon decays in the colliding ring lattice that will inundate the interaction region (IR) and will make triggering and data reconstruction a challenge. Developing simulation tools that can reliably model the environment of the muon collider IR will be critical to physics analyses. We will need to expand the capabilities of current programs and use them to benchmark and verify results against each other. In this paper we will discuss these processes and calculate the resulting particle fluxes into the detector volume.
 
 
MOPPD039 Status of the Design of the LBNE Neutrino Beamline target, proton, extraction, status 451
 
  • V. Papadimitriou, R. Andrews, M.R. Campbell, A.Z. Chen, S.C. Childress, C.D. Moore
    Fermilab, Batavia, USA
 
  Funding: DE-AC02-07CH11359 with the United States Department of Energy.
The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a beam of neutrinos toward a detector placed at the Homestake Mine in South Dakota, about 1300 km away. The neutrinos are produced as follows: First, protons extracted from the MI-10 section of the Main Injector (60-120 GeV) hit a solid target above grade and produce mesons. Then, the charged mesons are focused by a set of focusing horns into a 250 m long decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined taking into account several factors including the physics goals, the modeling of the facility, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW in order to enable the facility to run with an upgraded accelerator complex. We discuss here the status of the design and the associated challenges.
 
 
MOPPD059 Proposal of a Dummy Septum to Mitigate Ring Irradiation for the CERN PS Multi-Turn Extraction septum, extraction, beam-losses, vacuum 499
 
  • M. Giovannozzi, H. Bartosik, D. Bodart, J. Borburgh, R.J. Brown, S. Damjanovic, S.S. Gilardoni, B. Goddard, C. Hernalsteens, M. Hourican, M. Widorski
    CERN, Geneva, Switzerland
 
  High activation of the magnetic extraction septum of the CERN PS machine was observed due to the losses of the continuous beam extracted via the Multi-Turn Extraction (MTE) method. The resulting activation is however incompatible with safe operation so a mitigation measure was required and found, namely the installation of a passive dummy septum to protect the actual one seems to provide the required reduction in activation in the extraction area. The shielded dummy septum is intended to absorb particles during the rise time of the MTE extraction kickers, avoiding the beam impact on the blade of the active magnetic extraction septum. The principle of the proposed modifications of the PS layout will be presented together with the studies aimed at finalising the new configuration.  
 
MOPPR020 An Improved Cryogenic Current Comparator for FAIR pick-up, cryogenics, niobium, ion 822
 
  • R. Geithner, W. Vodel
    HIJ, Jena, Germany
  • R. Geithner, R. Neubert, P. Seidel
    FSU Jena, Jena, Germany
  • F. Kurian, H. Reeg, M. Schwickert
    GSI, Darmstadt, Germany
 
  Online monitoring of low intensity (below 1 μA) charged particle beams without disturbing the beam and its environment is crucial for any accelerator facility. For the upcoming FAIR project a beam monitor based on the Cryogenic Current Comparator principle with an enhanced resolution was developed. The main focus of research was on the low temperature properties of the ferromagnetic core material of the superconducting pickup coil. The pickup coil transforms the magnetic field of the beam into a current that is detected by a high performance low temperature dc Superconducting QUantum Interference Device (LTS-DC-SQUID). The penetration of the pickup coil by interfering magnetic fields is highly attenuated by a meander shaped superconducting shielding. The Cryogenic Current Comparator is able to measure DC beam currents, e.g. as required for slow extraction from a synchrotron, as well as bunched beams. In this contribution we present first results of the improved Cryogenic Current Comparator working in a laboratory environment.  
 
MOPPR053 Improvement of BPM System for the Siam Photon Source storage-ring, photon, synchrotron, controls 903
 
  • P. Songsiriritthigul, S. Boonsuya, S. Klinkhieo, P. Klysubun, S. Krainara, P. Sudmuang, N. Suradet
    SLRI, Nakhon Ratchasima, Thailand
  • J.-R. Chen, H.P. Hsueh, Y.-H. Liu
    NSRRC, Hsinchu, Taiwan
  • S. Rujirawat, P. Songsiriritthigul
    Suranaree University of Technology, Nakhon Ratchasima, Thailand
 
  The Siam Photon Source (SPS) is the first synchrotron light source ever built by modifying and relocating a light source from one country to another. The SPS produced its first light in Dec 2001. The machine has been used to provide regularly synchrotron light for users since 2005. Systematic studies and investigations of the machine have properly been carried out under the supervision of the International Advisory Committee of SLRI in the last two years. This report describes the improvement of the beam position monitoring (BPM) system for the 1.2 GeV storage ring of SPS. The efficiency and reliability of the original BPM system was greatly hindered by the low quality signal cables. The replacement with the higher quality (lower loss and better interference shielding) BPM cables and the implementation of a separated cable tray for the BPM cables have significantly improved the quality of the BPM signals, allowing the possibilities for machine study and thus providing further improvement of the machine. Detailed descriptions of the work on the BPM electronic boards will be described. The measurement results before and after the improvement of the BPM system will also be presented.  
 
TUPPP009 Status of the PETRA III Upgrade undulator, radiation, vacuum, site 1620
 
  • M. Bieler, K. Balewski, W. Drube, J. Keil, A. Kling
    DESY, Hamburg, Germany
 
  Since 2010 PETRA III, a third generation light source at DESY, has been running as a user facility, with all 14 undulator beam lines operational since autumn 2011. In order to fulfill the request for more beam time after the shut down of DORIS at the end of 2012, it was decided to add two additional halls at PETRA III, each housing 5 additional beam lines. Next to these two new halls about 100 m of the accelerator will be completely remodeled to install additional undulators. The upgrade should be accomplished during a 6 month shut down in 2013. In order to minimize this down time, it was decided to keep the existing accelerator tunnel in place. This has impact both on the mechanical connection between the accelerator and the experimental floor and on the design of the optical beam lines in the tunnel. In this paper the layout of the upgraded accelerator will be shown. The design status of the major components for the upgrade will be presented.  
 
TUPPR020 Updates to the CLIC Post-collision Line simulation, radiation, scattering, background 1855
 
  • L.C. Deacon
    CERN, Geneva, Switzerland
 
  The 1.5 TeV Compact Linear Collider (CLIC) beams, with a total power of 14 MW per beam, are disrupted at the interaction point due to the very strong beam-beam effect. The disrupted beam has a power of 10 MW. Some 3.5 MW reaches the main dump in the form of beamstrahlung photons, and about 0.5 MW of e+ and e- coherent pair particles with a very broad energy spectrum as well as the lower energy disrupted beam particles need to be disposed of along the post collision line. Calculations for the energy deposition in the magnet coils and the resulting magnet lifetimes for various shielding configurations are presented.  
 
TUPPR052 3D FEA Computation of the CLIC Machine Detector Interface Magnets solenoid, simulation, quadrupole, luminosity 1936
 
  • A. Bartalesi, M. Modena
    CERN, Geneva, Switzerland
 
  A critical aspect of the Compact Linear Collider (CLIC) design is represented by the Accelerator/Experiment interface (called Machine Detector Interface or MDI). In the 3 TeV CLIC layout, the final focus QD0 quadrupole will be located inside the end-cap of the detector itself. This complex MDI scenario required to be simulated with a full 3D-FE analysis. This study was critical to check and control the magnetic cross-talk between the Detector Solenoid and the final Focus QD0 magnet and therefore to optimize the design of an “antisolenoids” system needed to shield the QD0 and the e/e+ beams from the detector magnetic field. In this paper the development and evolution of the computational FE model is presented together with the results obtained and their implication on the CLIC MDI Design.  
 
WEPPC003 Component Qualification and Final Assembly of the S-DALINAC Injector Upgrade Module cavity, linac, SRF, niobium 2206
 
  • J. Conrad, R. Eichhorn, T. Kürzeder, A. Richter, S.T. Sievers
    TU Darmstadt, Darmstadt, Germany
 
  Funding: This work is supported by the DFG through SFB 634.
The injector of the S-DALINAC delivers currently electron beams of up to 10 MeV with a current of up to 60 μA. With the new cryostat-module an increase of both parameters, energies ranging to 14 MeV and currents up to 150 μA, are expected. For acceleration, the module houses two 20 cell elliptical niobium cavities which are used at a frequency of 3 GHz in liquid helium at 2 K. The RF power is delivered to the cavities through the different temperature stages by a WR-284 transition line which is connected to the resonator by a new waveguide-to-coax power coupler (being one of the major changes compared to the design of the existing module). We review on the design of the module and present the results of the first cool-down. Also, a report on additional new design features, e.g. piezo actuators for tuning at 2 K, and the production of the cavities will be given.
 
 
WEPPD029 The Mechanical Design of a Collimator and Cryogenic Bypass for Installation in the Dispersion Suppressors of the LHC cryogenics, vacuum, superconducting-magnet, collimation 2567
 
  • D. Ramos, L. Alberty Vieira, A. Bertarelli, A. Cherif, N. Chritin, R. Claret, L. Gentini, D. Lombard, P. Minginette, P. Moyret, M. Redondas Monteserin, T. Renaglia, M.A. Timmins
    CERN, Geneva, Switzerland
 
  A project to install collimators in the dispersion suppressor regions of the LHC was launched early 2010, aiming to reduce the power deposition in superconducting magnets by a factor of 10. To be placed in the continuous arc cryostat, the design of such collimators had to comply with challenging integration, functional and time constraints. A pre-study for a cold collimator solution was launched in parallel with an alternative design consisting of a room temperature collimator and a cryogenic bypass. The second was eventually preferred, as it was based on proven LHC technologies for cryogenic, vacuum, electrical and collimator material solutions, despite the increased difficulty on the mechanical integration and assembly. This paper presents the mechanical design of a cryogenic bypass for the LHC continuous cryostat and respective collimator unit, both made to comply with the functionality of existing LHC systems. The approach taken to achieve a reliable design within schedule will be explained alongside the measures adopted to validate new solutions, in particular, when dealing with welding distortions, systems routing, thermal loads and precision mechanics.  
 
WEPPD036 Energy Flow and Deposition in a 4-MW Muon Collider Target System target, collider, radiation, factory 2588
 
  • N. Souchlas, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • H.G. Kirk, H. K. Sayed
    BNL, Upton, Long Island, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
 
  Funding: Work support by the U.S. Department of Energy in part under Award No. DE-AC02-98CH10886
The design of the target station for a 4-MW Muon Collider or a Neutrino Factory is evolving to include more space for services to the magnets and internal tungsten shielding, as well as consideration of removing the 5-T resistive copper coils, thereby reducing the peak field from 20 to 15 T. Simulations with MARS15 have been performed to verify that these revisions preserve sufficient shielding that the peak power deposition everywhere in the superconducting magnets will be less than 0.1 mW/g, permitting at least a 10-year operational lifetime against radiation damage to the organic insulators.
 
 
WEPPD037 Shielding of Superconducting Coils for a 4-MW Muon-Collider Target System target, collider, interaction-region, factory 2591
 
  • R.J. Weggel, N. Souchlas
    Particle Beam Lasers, Inc., Northridge, California, USA
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • H.G. Kirk, H. K. Sayed
    BNL, Upton, Long Island, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
 
  Funding: Work support by the U.S. Department of Energy in part under Award No. DE-AC02-98CH10886
The target system envisioned for a Muon Collider/Neutrino Factory features a liquid Hg jet target immersed in a 20-T solenoidal field. Field quality limits intercoil gaps to ~ 40% of the O.D. of the flanking coils. Longitudinal sag of the tungsten shielding vessels limits their length to ~ 7 m. Support members adequate to resist intercryostat axial forces require an aggregate cross section of ~ 0.1 m2; the cryogenic heat leakage may be large. The innermost shielding vessel wall can be adequately cooled by helium gas only if its pressure is ~ 10 atm and its velocity is ~ 200m/s. However, the analysis in this paper found none of these engineering challenges to be insurmountable.
 
 
WEPPD038 Mercury Handling for the Target System for a Muon Collider target, proton, collider, factory 2594
 
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • H.G. Kirk, H. K. Sayed
    BNL, Upton, Long Island, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • N. Souchlas, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: Work supported in part by US DOE Contract NO.~DE-AC02-98CHI10886 and DE-AC05-00OR22725.
The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.
 
 
WEPPR099 Shielding of a Hadron in a Finite e-Beam plasma, electron, hadron, linac 3171
 
  • A. Elizarov, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The thorough study of coherent electron cooling, the modern cooling technique capable to deal with accelerators operating in the range of few TeVs*, rises many interesting questions. One of them is a shielding dynamics of a hadron in an electron beam. Now this effect is computed analytically in an infinite beam approximation**. Many effects are drastically different in finite and infinite plasmas. Here we propose a method to compute the dynamical shielding effect in a finite cylindrical plasma - the realistic model of an electron beam in accelerators.
* V. N. Litvinenko, Y. S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
** G. Wang, M. Blaskiewicz, Phys. Rev. E 78, 026413 (2008).
 
 
THEPPB002 High-Fidelity 3D Modulator Simulations of Coherent Electron Cooling Systems electron, ion, plasma, simulation 3231
 
  • G.I. Bell, D.L. Bruhwiler, I.V. Pogorelov, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the US DOE Office of Science, Office of Nuclear Physics, grant numbers DE-SC0000835 and DE-FC02-07ER41499. Resources of NERSC were used under contract No. DE-AC02-05CH11231.
Next generation electron-hadron colliders will require effective cooling of high-energy, high-intensity hadron beams. Coherent electron cooling (CeC) can in principle cool relativistic hadron beams on orders-of-magnitude shorter time scales than other techniques*. The parallel VORPAL framework is used for 3D delta-f PIC simulations of anisotropic Debye shielding in a full longitudinal slice of the co-propagating electron beam, choosing parameters relevant to the proof-of-principle experiment under development at BNL. The transverse density conforms to an exponential Vlasov equilibrium for Gaussian velocities, with no longitudinal density variation. Comparison with 1D1V Vlasov/Poisson simulations shows good agreement in 1D. Parallel 3D simulations at NERSC show 3D effects for ions moving longitudinally and transversely. Simulation results are compared with the constant-density theory of Wang and Blaskiewicz**.
* V.N. Litvinenko and Y.S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
** Wang and Blaskiewicz, Phys Rev E 78, 026413 (2008).
 
 
THPPC021 A Microwave Paraphoton and Axion Detection Experiment with 300 dB Electromagnetic Shielding at 3 GHz cavity, photon, coupling, pick-up 3320
 
  • M. Betz, F. Caspers
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the Wolfgang-Gentner-Programme of the Bundesministerium für Bildung und Forschung (BMBF).
For the microwave equivalent of "light shining through the wall" (LSW) experiments, a sensitive microwave detector and very high electromagnetic shielding is required. The screening attenuation between the axion-generating cavity and the nearby detection-cavity should be greater than 300 dB, in order to push beyond the presently existing exclusion limits. To achieve these goals in practice, a "box in a box" concept was utilized for shielding the detection-cavity, while a vector signal analyzer was used as a microwave receiver with a very narrow resolution bandwidth in the order of a few micro-Hz. This contribution will present the experimental layout and show the results to date.
 
 
THPPC065 Phase and Frequency Locked Magnetron cavity, controls, interaction-region, cathode 3440
 
  • M.L. Neubauer, A. Dudas, R. Sah
    Muons, Inc, Batavia, USA
  • A. Moretti, M. Popovic
    Fermilab, Batavia, USA
 
  Funding: Supported in part by SBIR Grant 4724 · 09SC02766
Phase and Frequency locked magnetrons have many important uses from phased array ground penetrating radars to SRF sources. We report on the recent progress in making such a magnetron. The ferrite/garnet material has passed bakeout and outgassing tests with outgassing rates well below the requirements. The magnetic field requirements for adjusting the frequency by changing the microwave properties of the ferrite/garnet have been determined. The design of the anode structure with ferrites, magnetic shielding, and magnetic bias has been completed for a low power test. We report on the design status. Muons, Inc. has negotiated an contract with a manufacturing firm, L-3 Electron Devices California Tube Laboratory, Inc., to be the Manufacturing Partner for the commercialization of this technology and support these Phase II efforts.
 
 
THPPD011 Radiation Hard Magnets at the Paul Scherrer Institute radiation, target, vacuum, neutron 3518
 
  • A.L. Gabard, J.P. Duppich, D. George
    Paul Scherrer Institut, Villigen, Switzerland
 
  Radiation hard magnets have been in operation at PSI for more than 30 years. Throughout this period, extensive experience was gained regarding both the conceptual design of these magnets and their operation. Worldwide, upcoming future projects for high intensity accelerators and spallation sources will create an increasing need for radiation hard magnets. Through a presentation of the PSI main accelerator facilities, this paper describes the lessons learned over the years regarding the operation of radiation hard magnets and explains a few basic design concepts adopted by PSI based on this experience.  
 
THPPD012 Measurement of Injection System of AC Septum Magnets for TPS Storage Ring septum, injection, storage-ring, vacuum 3521
 
  • F.-Y. Lin, C.-H. Chang, C.-S. Fann, C.-S. Hwang, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a 3 GeV third generation light source and will be operated in top-up injection mode. The leakage field of the septum magnet will dominate the injection performance. The septum magnets, parts of injection system, consist of AC and DC current mode magnets. The AC septum magnet were designed and constructed by NSRRC. In order to verify the magnetic field quality and the leakage field distribution, the search coil probe and the printed circuit technology for long coil probe measurement systems are developed and implemented for magnetic field measurement. This paper will describe the magnetic field measurement system, the magnetic field mapping results and the field shielding performance of AC septum magnet.  
 
THPPP006 Radiation Damage to Electronics at the LHC radiation, hadron, proton, luminosity 3734
 
  • M. Brugger
    CERN, Geneva, Switzerland
 
  Control systems installed in LHC underground areas using COTS (Commercial Off The Shelf) components are all affected by the risk of ‘Single Event Effects.’ In the LHC tunnel, in addition, cumulative dose effects have also to be considered. While for the tunnel equipment certain radiation tolerant design criteria were already taken into account during the LHC construction phase, most of the equipment placed in adjacent and partly shielded areas was not conceived nor tested for their current radiation environment. Given the large amount of electronics being installed in these areas, a CERN wide project called R2E (Radiation To Electronics) has been initiated to quantify the risk of radiation-induced failures and to mitigate the risk for nominal beams and beyond to below one failure a week. This paper summarizes the analysis and mitigation approach chosen for the LHC, presents the encountered difficulties and the obtained experience in the following aspects: radiation fields & related calculations, monitoring and benchmarking; commercial equipment/systems and their use in the LHC radiation fields; radiation tests with dedicated test areas and facilities*.
* Work presented on behalf of the CERN ’Radiation to Electronics (R2E) Mitigation Project’ and the ‘Radiation Working Group (RadWG)’
 
 
THPPR023 Radiation Shielding Design for Dream-Line Beamline at SSRF radiation, synchrotron, synchrotron-radiation, target 4011
 
  • J.Q. Xu, L.X. Liu, J.J. Lv, Y. Sheng, X. Xia
    SINAP, Shanghai, People's Republic of China
 
  The dream-line beamline at Shanghai Synchrotron Radiation Facility, SSRF, is an under construction soft X-ray beam line with a wide energy range and super high energy resolution. It is required to allow online operation beside optical components in the experiment hutch at this beamline when synchrotron light is running. This requires more careful radiation shielding design for the beamline. The radiation shielding designs for the beamline are considered to shield gas bremsstrahlung and synchrotron. Ray tracing was carried out according to the beamline structure and optical components layout. The residual gas bremsstrahlung with optical components and the induced dose rate distribution were simulated with the Fluka code. The synchrotron radiation scattering at optical components was calculated with the STAC08 code. With the simulated results, the specifications of shielding collimators, safety shutters, and hutch wall are given for the beamline. The normalized dose rate results by gas bremsstrahlung are consisted with the measurements or calculations results in other facilities in the world very well.
* Corresponding author: xiaxiaobin@sinap.ac.cn
 
 
THPPR041 The Conceptual Design of the Shielding Layout and Beam Absorber at the PXIE radiation, cryomodule, proton, rfq 4065
 
  • Y.I. Eidelman, J.S. Kerby, V.A. Lebedev, J.R. Leibfritz, A.F. Leveling, S. Nagaitsev, R.P. Stanek
    Fermilab, Batavia, USA
 
  The Project X Injector Experiment (PXIE) is a prototype of the Project X front end. A 30 MeV 50 kW H beam will be used to validate the design concept of the Project X. This paper discusses a design of the accelerator enclosure radiation shielding and the beam dump. Detailed energy deposition and activation simulation were performed with the MARS15 code. The simulation results guided the design of the installation enclosure.  
 
THPPR043 Applications of X-band 950 keV and 3.95 MeV Linac X-ray Source for On-site Inspection linac, radiation, focusing, coupling 4071
 
  • M. Uesaka, K. Demachi, K. Dobashi, T. Fujiwara, H.F. Jin, M. Jin, H. Zhu
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • Y. Hattori
    Hitachi Engineering & Services Co.,Ltd., Japan
  • J. Kusano, N. Nakamura, M. Yamamoto
    Accuthera Inc., Kawasaki, Kanagawa, Japan
  • I. Miura
    Mitsubishi Chemical Corporation, Japan
  • E. Tanabe
    AET, Kawasaki-City, Japan
 
  Our portable X-band (9.3GHz) 950KeV linac has been successfully upgraded. The problems of RF power oscillation, beam current oscillation and reduction and finally lack of X-ray intensity were solved by replacing the axial coupling cavities with the side-coupled ones. Designed X-ray dose rate of 0.05 Sv/min@1m is going to be achieved. X-ray source part with the local radiation shielding is connected by the flexible waveguide with the box of a 250 kW magnetron and a cooling unit. The total system consists of the three suit-case-size units, the last of which is one for the electric power supply. We have also developed a portable X-band (9.3GHz) 3.95MeV linac for on-site bridge inspection. The system consists of a 62kg X-ray source part without 80kg target collimator, a 62kg RF power source and other utility box of 116kg. Designed X-ray dose rate is 2 Sv/min@1m with 200pps repetition rate and we have achieved 0.5 Sv/min@1m with 50pps repetition rate. Demonstration of the measurement of wall thinning of metal pipes with thick thermal shielding by 950keV linac and degradation of reinforced concrete sample by 3.95MeV is under way. Updated measurement results will be presented.