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Abstract
The longitudinal CSR impedance is proportional to the

radiation power spectrum of a point charge. The code
CSRZ, which solves the parabolic equations in the fre-
quency domain, is used to calculate the synchrotron radi-
ation (SR) fields and impedance with rectangular chamber
shielding. The most attractive merit of the method for CSR
modeling lies in taking into account the realistic chamber
shielding. The driven source in the code is rigid and has
point-charge distribution in the longitudinal direction. It is
found that the calculated impedance shows significant simi-
larity to the spectra of measured infrared signals in electron
rings. An alternative 1D model of utilizing the calculated
SR impedance for simulation of CSR effects is proposed.

INTRODUCTION
Since the concept of the impedance was introduced to

describe CSR effects [1, 2], there have been tremendous
efforts in calculating the CSR wake fields and impedance
analytically. In parallel to developments of analytical the-
ories, various codes have also been developed to calculate
the CSR wake fields and impedance. For a single bending
magnet with shielding of beam chamber, up to now only
numerical methods are available [3, 4, 5, 6].

In electron storage rings, the bunch length is usually in
the order of a few millimeters, or down to sub-millimeters
for dedicated THz radiation sources. Measurements in
the CSR signals have shown fine structures in their spec-
tra [7, 8, 9, 10]. It is obvious that the energetic spectrum
due to synchrotron radiation (SR) of a moving point charge
is linearly proportional to the longitudinal impedance

dU(k)

dk

∣∣∣∣
s

=
e2c

π
Re.Z‖SR(k). (1)

Here Z‖SR(k) is general, and represents impedance of a
single or a series of bends. It is a function of the orbit
curvature, magnet length, and chamber dimensions. For a
bunched beam, the energetic spectrum is written as

dU(k)

dk

∣∣∣∣
b

=

[
N +N(N − 1)

∣∣∣λ̃(k)∣∣∣2] dU(k)

dk

∣∣∣∣
s

, (2)

where N is the bunch population. For a Gaussian bunch
with line charge distribution, the beam spectrum is λ̃(k) =
Exp[−k2σ2

z/2]. The relation between predicted radiation
spectrum and measured signal spectrum

dU(k)

dk

∣∣∣∣
m

= T (k)
dU(k)

dk

∣∣∣∣
b

. (3)
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Here T (k) is a transfer function characterizing the response
of the detection system (such as optical efficiency, and low-
pass filter).

There are two kinds of studies on CSR detections: 1)
Assume that dU(k)/dk|s and T (k) are known, measuring
dU(k)/dk|b for a bunch give the information of the bunchs
profiles. It directs to developing new techniques for beam
diagnostics [11]; 2) Assume that dU(k)/dk|s, T (k), and
bunch profile are known, one can design and optimize a
THz light source.

FEATURES OF CSRZ CODE
The code CSRZ inherits the main features of the method

described in Refs. [3, 12]. The code solves a set of
parabolic equations simplified from Maxwell’s equations,
i.e.

∂ �E⊥
∂s

=
i

2k

[
∇2

⊥ �E⊥ − 1

ε0
∇⊥ρ0 +

2k2x

R(s)
�E⊥

]
, (4)

where �E⊥ is the transverse electric field, and ε0 is the vac-
uum permittivity. The curvature of the beam orbit defined
by R(s) is assumed to be an arbitrary functions of s. This
assumption indicates the most significant feature of CSRZ.
The vacuum chamber having an uniform rectangular cross-
section adopts the same curvature of the beam trajectory.
Freeing R(s) allows CSRZ to investigate the CSR interfer-
ence between consecutive bending magnets, even coherent
wiggler or undulator radiation. With paraxial approxima-
tion, the longitudinal electric field is approximated by

Es =
i

k

(
∇⊥ · �E⊥ − μ0cJs

)
, (5)

where μ0 is the vacuum permeability, c is the speed of light
in vacuum, and Js = ρ0c is the current density.

The original motivation of developing the independent
code CSRZ was intended to study the multi-bend CSR in-
terference in a storage ring. In CSRZ, the beam is assumed
to have a point charge form in the longitudinal direction.
Then the longitudinal CSR impedance is calculated by di-
rectly integrating Es over s

Z‖SR(k) = −1

q

∫ ∞

0

Es(xc, yc)ds, (6)

where (xc, yc) denotes the center of the beam in the trans-
verse x−y plane. The code can also monitor the electric
fields at specified position. Suppose that the bunch spec-
trum λ̃(k) is known, then the time-domain fields can be
calculated by

�E(x, y, s; t) = c

2π

∫ ∞

−∞
λ̃(k) �E(x, y, s; k)eikzdk (7)
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with z = s− ct.

ENERGETIC SPECTRUM FOR A SINGLE
BEND

To demonstrate how the chamber shielding modify the
SR energetic spectrum, we start from calculating the lon-
gitudinal SR impedance of a single bending magnet with
constant bending radius in a curved chamber. The parame-
ters are chosen as the same: the bending radius R = 5 m,
and the horizontal and vertical dimensions of the cham-
ber’s cross-section are a = 6 cm and b = 3 cm, respec-
tively. The magnet length is varied as Lb = 0.5, 2, 8 m.
The impedance results are shown in Fig. 1. In the same
figure, we also plot the result given by the parallel plates
model [3]. Since the SR energetic spectrum is simply pro-
portion to the real part of SR impedance, we can easily
conclude that the energetic spectrum significantly deviates
from the steady-state model. When Lb = 0.5 m, which in-
dicates a short magnet, the spectrum is very smooth. When
the magnet gets longer, the impedance becomes fluctuating
and eventually results in a series of resonant peaks. The
resonant peaks are actually correlated to the eigenmodes
of the curved chamber [13]. When the curved chamber is
long enough, some specific modes which fulfill the phase
matching condition can be strongly excited by the beam
and become dominant in the radiation fields. For more dis-
cussions, the readers are referred to Ref. [14].
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Figure 1: Real part of the CSR impedance for a single
bending magnet. The impedances have been normalized
by the magnet lengths. Blue solid line: Lb = 0.5 m; red
solid line: Lb = 2 m; green dashed line: Lb = 8 m; black
solid line: parallel plates model.

The measured SR power spectrum from the U12IR beam
line at the NSLS-VUV ring consists of similar resonant
peaks [7] as shown in the previous example. It was pointed
out in Ref. [10] that these peaks should be attributed to the
resonant modes of the curved vacuum chamber. Using the
CSRZ code, it is straightforward to obtain the power spec-
trum by calculating the SR impedance. With parameters of
R = 1.91 m, Lb = 1.5 m, a = 80 mm and b = 42 mm, the
SR impedance is compared with the measure far IR spec-
trum in Fig. 2. Following Ref. [10], the beam orbit has an
offset of 2 mm to the side of outer wall in the calculation.
Besides the general agreement in the positions, as also ob-

tained in Ref. [10], we also observe the excellent match in
the widths of the peaks. The discrepancy in the amplitude
of the spectra at low- and high-frequency parts can be ex-
plained by the transfer function T (k) as defined in Eq. (3).
In this case, the transfer function is unknown yet, but pos-
sibly is obtainable through field calculations by extending
the CSRZ code to include the IR beamline.
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Figure 2: Comparison of the SR impedance and the mea-
sured incoherent SR power spectrum using interferometer
at NSLS VUV ring. Blue solid line: Real part of the SR
impedance; red dashed lines: Far IR power spectrum.

1D MODEL FOR SIMULATION OF CSR
EFFECTS

It is possible to utilize the SR impedance in simulations
of CSR effects. The general formula for calculating wake
force from impedance is

F (z) =
c

2π

∫ ∞

−∞
Z‖SR(k)λ̃(k)dk. (8)

In the ultra-relativistic limit, one popular 1D model for
the CSR wake potential per unit length inside a bending
magnet is [15]

∂W‖b(z, s)
∂s

= T1(z,R, s) + T2(z,R, s), (9)

where R is the bending radius, s is the orbit distance from
the entrance of the magnet and z is the position within the
bunch. The form of the above equation has been modified
according to the notations of this paper. The quantities T 1

and T2 represent the main part of CSR fields and the tran-
sient part at the entrance, respectively. They are defined
by

T1(z,R, s) = K

∫ z

z−zL

dλ(z′)
dz′

(
1

z − z′

)1/3

dz′, (10)

T2(z,R, s) = K
λ(z − zL)− λ(z − 4zL)

z
1/3
L

, (11)

where λ(z′) is the linear charge density, zL(R, s) =
s3/(24R2) is the slippage length and the parameter K is
defined as follows

K(R) = − 1

4πε0

2

(3R2)1/3
. (12)
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Suppose that the bunch distribution λ(z) equals Dirac
delta function as a result of point charge, i.e. λ(z) =
δ(z). Applying the delta function to Eq. (9) yields the s-
dependent wake function of

∂w‖b(z, s)
∂s

= −K×[
1

3

(
1

z

)4/3

H(z)H(zL − z) +
δ(z − 4zL)

z
1/3
L

]
, (13)

where H(z) is Heaviside step function defined by

H(z) =

∫ z

−∞
δ(t) dt. (14)

Applying Laplace transform to the above wake function
gives the s-dependent CSR impedance as follows

∂Z‖b(k, s)
∂s

= K

{
e−4ikzL

z
1/3
L

− (ik)1/3×
[
Γ

(
2

3

)
+

1

3
Γ

(
−1

3
, ikzL

)]}
, (15)

where Γ(z) is Euler gamma function and Γ(a, z) is in-
complete gamma function, respectively defined by Γ(a) =∫∞
0

ta−1e−t dt , and Γ(a, z) =
∫∞
z

ta−1e−t dt . It is inter-
esting to compare Eq. (15) with Eq. (6): Taking the deriva-
tive over s at both sides of Eq. (6) gives

∂Z‖SR(k, s)

∂s
= −1

q
Es(xc, yc, s). (16)

Apparently the s-dependent longitudinal impedance is ex-
actly the longitudinal fields being calculated by the CSRZ
code.

Utilizing Eq. (9) to calculate CSR forces requires the
derivative of the linear density, but using impedance only
require the spectrum of the charge density. In the later
case, the singularity near at z − z ′ = 0 due to the term
of (z − z′)−1/3 in Eq. (10) is relaxed. Extremely high fre-
quency CSR impedance related to incoherent synchrotron
radiation (ISR) can be naturally cut off. Finally, the cham-
ber shielding is naturally included if the SR impedance
from numerical calculations with chamber shielding con-
sidered.

The capability of CSRZ is mainly limited by the mesh
sizes in the x − y plane and step size in the s direction.
With explicit discretization scheme, the mesh and step sizes
should be proportional to k−2/3 and k−1/3 respectively,
due to necessary numerical stability conditions [3]. To ob-
tain CSR impedance at extremely high frequency, the com-
putations become unacceptably expensive. But the high-
frequency impedance can be approximated by analytical
formulas. Along the beam orbit, which may be formed by
multi bends interleaved with drifts, the vacuum chamber is
sliced into a series of segments. The low-frequency CSR
impedance for each segment, in this case chamber shield-
ing is significant, is obtained by numerical calculations.

The high-frequency CSR impedance, in this case chamber
shielding is negligible, is estimated by the analytical model
of Eq. (15). The wake kick at each segment is computed
via inverse Fourier transform of the impedance convolved
the the beam spectrum. The most attractive merit of the
method for CSR modeling lies in taking into account the
realistic chamber shielding.

DISCUSSIONS
The 1D model for synchrotron radiation is extended in

this paper. The SR impedance and power spectrum can be
taken as linear response of the curved chamber. With infor-
mation of the beam spectrum provided, the SR impedance
can be used to explain the measured power spectrum. Or
vise versa, with measured power spectrum, the information
of the bunch profile can be extracted.

The SR impedance is distributed along the orbit. For
magnet with finite length, it is strongly s-dependent. It is
possible to utilize the well-defined SR impedance in simu-
lations of CSR effects. The implementation of the scheme
proposed in the paper to numerical simulations is under in-
vestigation.

The author D.Z. would like to thank S.L. Kramer for pro-
viding the data of measured power spectrum at NSLS VUV
ring and also many informative comments.
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