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Abstract
Next generation electron-hadron colliders will require

effective cooling of high-energy, high-intensity hadron
beams. Coherent electron cooling (CeC) can in princi-
ple cool relativistic hadron beams on orders-of-magnitude
shorter time scales than other techniques [1]. The parallel
Vorpal framework is used for 3D delta-f PIC simulations
of anisotropic Debye shielding in a full longitudinal slice
of the co-propagating electron beam, choosing parameters
relevant to the proof-of-principle experiment under devel-
opment at BNL. The transverse density conforms to an ex-
ponential Vlasov equilibrium for Gaussian velocities, with
no longitudinal density variation. Comparison with 1D1V
Vlasov/Poisson simulations shows good agreement in 1D.
Parallel 3D simulations at NERSC show 3D effects for ions
moving longitudinally and transversely. Simulation results
are comparedwith the constant-density theory ofWang and
Blaskiewicz [2].

COHERENT ELECTRON COOLING
Coherent electron cooling (CEC) is a novel technique for

rapidly cooling high-energy hadron beams [1]. The pro-
posed Brookhaven CEC consists of three sections: amodu-
lator, where the ion imprints a density wake on the electron
distribution, an FEL, where the density wake is amplified
by an FEL, and a kicker, where the amplified wake interacts
with the ion, resulting in dynamical friction for the ion.
In this paper we consider only the modulator section. We

calculate the wake in the electron distribution due to the
presence of a single ion, as the ion drifts with many co-
propagating electrons. Although these particles are highly
relativistic in the laboratory frame, particle velocities are
non-relativistic in the beam frame drifting with the mean
speed of the particles. In previous work [6] we modeled
only a small portion of the beam, and the electron density
was constant and uniform in space. Here we consider a
more realistic beam where the electron density decreases
to zero at the edge of the beam.
We assume the beam is close to an equilibrium solution

with radial symmetry in x and y, and uniform in z (the di-
rection of beam propagation). The formulation below uses
a 2D transverse beam description, we can also simulate a
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3D beam by assuming it is uniform in z. Simulation results
are calculated using Vorpal [3] using delta-f PIC [4].
Wang and Blaskiewicz [2] found exact solutions to the

Vlasov-Poisson equations in a uniform electron density as-
suming a special form of the electron velocity distribution,
a kappa-2 distribution. Despite the different assumptions
of this model, it is very easy to calculate its predictions,
so this simple model provides a useful comparison to our
numerical results.

DELTA-F FORMULATION
If f(�x, �p, t) is the phase space electron density, f evolves

according to the Vlasov equation, which specifies that the
total time derivative of f(�x, �p, t) is zero,

Df

Dt
=

∂f

∂t
+

d�x

dt
· ∇xf +

d�p

dt
· ∇pf = 0. (1)

The particles accelerate due to the total electric field, which
is composed of the field −∇xφ(�x, t) due to the perturbing
ion and electron charge distribution plus an external field
�Eext,

d�p

dt
= e(−∇xφ + �Eext), (2)

where e < 0 is the electron charge. The potentialφ satisfies
a self-consistent Poisson equation

∇2φ = −ρ(�x, t)

ε0
, (3)

where

ρ(�x, t) = Z|e|δ(�x − �xion) + eñ(�x, t), (4)

ñ(�x, t) =
∫

f(�x, �p, t)d�p, and the ion located at �xion has
charge Z|e|.
We now split the electron density

f = f0 + f1, (5)

where f0 describes the bulk beam behavior without the ion,
and f1 is a small perturbation which describes the electron
shielding response to the ion. f0 satisfies the Vlasov equa-
tion (1) and φ0 satisfies a self consistent Poisson equation
(3), except that the ion is not present in Equation (4). We
note that in general f0 need not be a steady-state solution
or radially symmetric.
A convenient way to obtain a steady-state f0 is to start

from a time independent Hamiltonian. We assume the sim-
plest form for the external field, uniform radial focusing
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�Eext = E′

0
rr̂ where r =

√
x2 + y2 is the radial coordi-

nate. Assuming the potential φ0 is time independent,

H =
p2

r

2me

+ e

(
φ0(r) − E′

0
r2

2

)
, (6)

whereme is the electron mass, and recall that e < 0. Since
the Hamiltonian is time-independent, any function of H is
also time-independent, and this can be used to form the
steady-state density function

f0 =
n0

2πmeσ2
exp

[
−H(�x, �p)

meσ2

]
, (7)

where n0 is the maximum density value in the center of the
beam, and σ is the x or y RMS velocity of the Gaussian
particle distribution. The self-consistent Poisson equation
for φ0(r) is

∇2φ0 =
−en0

ε0
exp

[ −e

meσ2

(
φ0 − E′

0
r2

2

)]
. (8)

These are the same equilibrium solutions to the Vlasov-
Poisson equations in Ref. [5]. Equation (8) can be easily
solved numerically using a standard ODE solver.
Figure 1 shows equilibrium density curves as the ex-

ternal focusing parameter E′

0
doubles in magnitude. The

central density value n0 as well as the RMS velocity σ
have been adjusted so that each beam in Figure 1 has
the same total charge and emittance. Note that the cen-
tral density value doubles while the radius decreases by
a factor of

√
2. The initial values are chosen to corre-

spond to the Coherent Cooling proof-of-principle experi-
ment: n0 = 5.48×1016e/m3, σ = 8.79×105m/s. These
give a base plasma frequency of wp = 1.32 × 1010 rad/sec
and a Debye radius of σ/wp = 66.5μm. Note, however,
that the beam profiles in Figure 1 have variable density, so
the plasma frequency and Debye radius will vary.
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Figure 1: Density curves for a 2D beam with radial sym-
metry. Symbols show the position and local density seen
by the two ions in the simulations.

The perturbation density f1 satisfies

Df1

Dt
= e∇xφ1 · ∇pf0, (9)

where φ1(�x, t) is the self-consistent potential for the per-
turbation f1,

∇2φ1 = −ρ1(�x, t)

ε0
, (10)

where

ρ1(�x, t) = Z|e|δ(�x − �xion) + eñ1(�x, t), (11)

and ñ1(�x, t) =
∫

f1(�x, �p, t)d�p. In this case it is easy to
calculate∇pf0 directly from (7)

∇pf0 = − f0pr

m2
eσ

2
r̂. (12)

The perturbation f1 is modeled using delta-f PIC [4].
Suppose the i’th delta-f PIC particle has position �xi, ve-
locity �vi and weight wi. These particles represent the per-
turbation f1, as defined by

f1(�x,�v, t) =
∑

i

wiδ(�x − �xi)δ(�v − �vi). (13)

The initial weight of the delta-f particles is zero, and usu-
ally delta-f particles are distributed uniformly in phase
space. The delta-f particles move in response to all fields,
and their weights evolve according to Equation (9), which
specifies

dwi

dt
=

e

g
∇xφ1(�xi, �vi, t) · ∇pf0(�xi, �vi), (14)

where g is the loading distribution of the delta-f particles.
For uniform loading g = nptcl/V where nptcl is the nomi-
nal plasma density and V is the loading volume in velocity
space.
In the absence of any perturbation, the Hamiltonian (6)

for each delta-f particle is constant in time. If a particle be-
gins with a large value ofH/(meσ

2), by (7) f0 will be ex-
ponentially small and the particle weight will remain small.
So we need not include delta-f particles with large values
of H/(meσ

2). However, in practice it is simplest to uni-
formly populate phase space with delta-f particles in the
region of the beam.

Simulation Results
In the modulator, quadrupolemagnets decrease the beam

radius by a factor of two for passage through the FEL. We
model this by increasing the external focusing field linearly
in time by a factor of two, giving the beam profiles shown
in Figure 1. In these simulations the beam radius decreases
by only a factor of

√
2. We assume that at all times the bulk

beam remains in equilibrium, which, strictly speaking is
only the case if the external focusing field increases slowly
compared to a plasma period. This is not the case for our
simulations, which take place over half a plasma period.
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Wang and Blaskiewicz [2] derived an exact shielding re-
sult assuming uniform electron density, for electrons with
a kappa-2 velocity distribution (rather than Maxwellian).
Their result for ñ1(�x, t) is written in terms of a single in-
tegral over the time interval of the interaction, for this case
the integral is Eq. (15) in Ref. [6]. In this integral the
plasma frequency and electron temperature are constants,
however, by moving them inside the integral we can use
this formula to estimate the shielding when the density and
electron temperature are changing. We calculate the elec-
tron density at the location of the ion, and from this a lo-
cal plasma frequency which now changes with time. If we
move the plasma frequency inside the integral we can cal-
culate ñ1(�x, t) numerically as before. The electron temper-
ature also increases as the beam is squeezed down, this is
also incorporated into the integral.

Figure 2: Ion#1 shielding response at y = 0 using delta-f
(solid) or theory (dashed, red) at half a plasma period.

Ion#1 stays in the region of the beam where the density
is relatively flat. Figure 2 shows the electron shielding re-
sponse of Ion#1, which begins at x = 330μm, y = 0 and
moves to the left (toward the beam center) at the thermal
speed σ. The ion is almost unaffected by the external fo-
cusing field due to its large mass, and travels at a constant
velocity. The figure shows the y = 0 slice of ñ1 at half a
plasma period. The theoretical curve (dashed) agrees well
with the delta-f simulation. Note the small negative areas
of the curve near the left and right edges of the beam. These
regions hold a small negative perturbation, but when inte-
grated over all slices their contribution is significant. In fact
the total integral of ñ1 over the beam is zero, which is to
be expected since the beam is finite. The theoretical curve
is always positive, and the integral over all x and y is ap-
proximately 2Z , because it assumes an infinite domain of
constant density.
Ion#2 begins at x = 700μm, y = 0 andmoves left at 3/4

the thermal speed σ. This position and velocity ensure that
it remains near the edge of the beam where the density is
dropping rapidly (Figure 1). Figure 3 shows that the theory
predicts the amplitude of the wake fairly accurately, but it

Figure 3: Ion#2 shielding response iat y = 0 using delta-f
(solid) or theory (dashed, red), at half a plasma period.

is too wide. The response is much lower than predicted to
the right of the ion, because the density goes to zero in this
region. This is expected to produce a very weak response
because the plasma frequency goes to zero with the density.

Summary
The constant-density theory of Wang and Blaskiewicz

[2] is able to predict wakes accurately when the density
is relatively uniform near the ion but changing in time.
Near the edge of the beam, where the density is chang-
ing rapidly, delta-f PIC results show a weaker shielding
response toward the edge of the beam compared the the
constant-density theory.
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