Keyword: proton
Paper Title Other Keywords Page
MOOHC2 The US Electron Ion Collider Accelerator Designs electron, collider, polarization, luminosity 1
 
  • A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Bruker, A. Camsonne, E. Daly, P. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, J.M. Grames, J. Guo, F.E. Hannon, L. Harwood, S. Henderson, H. Huang, A. Hutton, K. Jordan, D.H. Kashy, A.J. Kimber, G.A. Krafft, R. Lassiter, R. Li, F. Lin, M.A. Mamun, F. Marhauser, R. McKeown, T.J. Michalski, V.S. Morozov, P. Nadel-Turonski, E.A. Nissen, G.-T. Park, H. Park, M. Poelker, T. Powers, R. Rajput-Ghoshal, R.A. Rimmer, Y. Roblin, D. Romanov, P. Rossi, T. Satogata, M.F. Spata, R. Suleiman, A.V. Sy, C. Tennant, H. Wang, S. Wang, C. Weiss, M. Wiseman, W. Wittmer, R. Yoshida, H. Zhang, S. Zhang, Y. Zhang, Z.W. Zhao
    JLab, Newport News, Virginia, USA
  • D.T. Abell, D.L. Bruhwiler, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, A. Kiselev, V. Litvinenko, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, E. Wang, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • D.P. Barber
    DESY, Hamburg, Germany
  • I.V. Bazarov
    Cornell University, Ithaca, New York, USA
  • G.I. Bell, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • Y. Cai, Y.M. Nosochkov, A. Novokhatski, G. Stupakov, M.K. Sullivan, C.-Y. Tsai
    SLAC, Menlo Park, California, USA
  • Z.A. Conway, M.P. Kelly, B. Mustapha, U. Wienands, A. Zholents
    ANL, Lemont, Illinois, USA
  • S.U. De Silva, J.R. Delayen, H. Huang, C. Hyde, S. Sosa, B. Terzić
    ODU, Norfolk, Virginia, USA
  • K.E. Deitrick, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • B. Erdelyi, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.D. Fox
    Stanford University, Stanford, California, USA
  • J. Gerity, T.L. Mann, P.M. McIntyre, N. Pogue, A. Sattarov
    Texas A&M University, College Station, USA
  • E. Gianfelice-Wendt, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
  • Y. Hao, P.N. Ostroumov, A.S. Plastun, R.C. York
    FRIB, East Lansing, Michigan, USA
  • T. Mastoridis
    CalPoly, San Luis Obispo, California, USA
  • J.D. Maxwell, R. Milner, M. Musgrave
    MIT, Cambridge, Massachusetts, USA
  • J. Qiang, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • D. Teytelman
    Dimtel, Redwood City, California, USA
  • R.C. York
    NSCL, East Lansing, Michigan, USA
 
  With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.  
slides icon Slides MOOHC2 [14.774 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2  
About • paper received ※ 29 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYBA1 LHC Status and Plans luminosity, operation, electron, experiment 8
 
  • X. Buffat
    CERN, Geneva, Switzerland
 
  Performance and accelerator physics challenges from LHC Run 2 are reviewed, along with the ongoing preparation and plans for LHC Runs 3 and 4.  
slides icon Slides MOYBA1 [13.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBA1  
About • paper received ※ 26 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYBA4 eRHIC Design Update electron, luminosity, hadron, interaction-region 18
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, S. Verdú-Andrés, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The future electron-ion collider (EIC) aims at an electron-proton luminosity of 1033 to 1034 cm-2 sec-1 and a center-of-mass energy range from 20 to 140 GeV. The eRHIC design has been continuously evolving over a couple of years and has reached a considerable level of maturity. The concept is generally conservative with very few risk items which are mitigated in various ways.
 
slides icon Slides MOYBA4 [5.466 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBA4  
About • paper received ※ 24 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYBA5 Weak-Strong Simulation of Beam-Beam Effects in Super Proton-Proton Collider simulation, collider, luminosity, resonance 22
 
  • L.J. Wang, J.Y. Tang
    IHEP, Beijing, People’s Republic of China
  • T. Sen
    Fermilab, Batavia, Illinois, USA
 
  A Super Proton-Proton Collider (SPPC) that aims to explore new physics beyond the standard model is planned in China. Here we focus on the impact of beam-beam interactions in the SPPC. Simulations show that with the current optics and nominal tunes, the dynamic aperture (DA) with all the beam-beam interactions is less than 6σ, the dominant cause being the long-range interactions. First, we show the results of a tune scan done to maximize the DA. Next, we discuss the compensation of the long-range interactions by increasing the crossing angle and also by using current carrying wires.  
slides icon Slides MOYBA5 [1.004 MB]  
poster icon Poster MOYBA5 [0.727 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBA5  
About • paper received ※ 25 August 2019       paper accepted ※ 20 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLS09 Engineering Design of Gallium-Nickel Target in Niobium Capsule, with a Major Focus on Determining the Thermal Properties of Gallium-Nickel Through Thermal Testing and FEA, for Irradiation at BLIP target, radiation, niobium, experiment 170
 
  • S.K. Nayak, S. Bellavia, H. Chelminski, C.S. Cutler, D. Kim, D. Medvedev
    BNL, Upton, New York, USA
 
  Funding: Funding:This abstract is authored by BSA operated under contract number DE-SC0012704. This research is supported by the U.S. DOE Isotope Program, managed by the Office of Science for Nuclear Physics.
The Brookhaven Linac Isotope Producer (BLIP) produces several radioisotopes using a variable energy and current proton beam. The targets irradiated at BLIP are cooled by water and required to be isolated in a target capsule. During the design stage, thermal analysis of the target and cladding is carried out to determine the maximum beam power a target can handle during irradiation without destruction. In this work we designed a capsule for Gallium-Nickel (Ga 80%, Ni 20%) alloy target material and irradiated the target at the BLIP to produce the radioisotope Ge-68. Since no literature data is available on Ga4Ni’s thermal conductivity (K) and specific heat (C), measurements were carried out using thermal testing in conjunction with Finite Element Analysis (FEA). Steady-state one dimensional heat conduction method was used to determine the thermal conductivity. Transient method was used to calculate the specific heat. The test setup with same methodologies can be used to assess other targets in the future. Here, we will detail these studies and discuss the improved design and fabrication of this target.
 
poster icon Poster MOPLS09 [0.751 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLS09  
About • paper received ※ 27 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLO15 Engineering and Fabrication of the High Gradient Structure for Compact Ion Therapy Linac linac, vacuum, operation, coupling 267
 
  • O. Chimalpopoca, R.B. Agustsson, S.V. Kutsaev, A.Yu. Smirnov, A. Verma
    RadiaBeam, Santa Monica, California, USA
  • A. Barcikowski, R.L. Fischer, B. Mustapha
    ANL, Lemont, Illinois, USA
 
  RadiaBeam is fabricating a novel ultra-high gradient linear accelerator for the Advanced Compact Carbon Ion LINAC (ACCIL) project. The ACCIL is an Argonne National Laboratory (ANL) led project, in collaboration with RadiaBeam, designed to be capable of delivering sufficiently energized carbon ions and protons while maintaining a 50 m footprint. This is made possible by the development of S-Band 50 MV/m accelerating structures for particles with beta of 0.3 or higher. Such high gradient accelerating structures require particular care in their engineering details and fabrication process to limit the RF breakdown at the operating gradients. The details of fabrication and engineering design of the accelerating structure will be presented.  
poster icon Poster MOPLO15 [1.050 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO15  
About • paper received ※ 28 August 2019       paper accepted ※ 12 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXBA3 Robust Thermoacoustic Range Verification for Pulsed Ion Beam Therapy target, radiation, simulation, experiment 294
 
  • S.K. Patch
    UWM, Milwaukee, Wisconsin, USA
  • B.M. Brahim, D. Santiago-Gonzalez
    ANL, Lemont, Illinois, USA
 
  Funding: * Supported by the U.S D.O.E., Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. Measurements were performed at ANL’s ATLAS facility, which is a DOE Office of Science User Facility.
Lack of online range verification generally limits application of proton therapy to cancers in the brain, spine, and to pediatric patients. Previously, thermoacoustic range verification (TARV) has been demonstrated in weakly scattering media with known sound speed [1]. At ATLAS, we demonstrated the accuracy and robustness of TARV relative to ultrasound (US) images despite acoustic heterogeneity and sound speed errors representing in vivo conditions [2]. 250 ns pulses deposited 0.26 Gy of 16 MeV protons and 2.3 Gy of 60 MeV helium ions into liquid targets. TA signals were detected by an US array that also generated US images. An air gap phantom displaced the Bragg peak by 6.5 mm and the scanner’s propagation speed setting was altered by ±5%. Weak and strong scatterers were placed between the Bragg peak and US array. Estimated Bragg peak locations were translated 6.5 mm by the air gap phantom and agreed with TRIM simulations to within 0.3 mm, even when TA emissions traveled through a strong acoustic scatterer. Soundspeed errors dilated, and acoustic heterogeneities deformed both US images and TA range estimates, confirming that TARV is accurate relative to US images.
[1] Hickling, et al, Med Phys, 45(7), 2018. (review article)
[2] S. Patch, D. Santiago, & B. Mustapha, Med Phys, 46(1), 2019.
 
slides icon Slides TUXBA3 [4.449 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUXBA3  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXBA4 Rapid Radio-Frequency Beam Energy Modulator for Proton Therapy cavity, simulation, GUI, klystron 298
 
  • X. Lu, G.B. Bowden, V.A. Dolgashev, Z. Li, E.A. Nanni, A.V. Sy, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by US Department of Energy (DOE) Contract No. DE-AC02-76SF00515.
We present the design for a rapid proton energy modulator with radio-frequency (RF) accelerator cavities. The energy modulator is designed as a multi-cell one-meter long accelerator working at 2.856 GHz. We envision that each individual accelerator cavity is powered by a 400 kW low-voltage klystron to provide an accelerating / decelerating gradient of 30 MV/m. We have performed beam dynamics simulations showing that the modulator can provide ± 30MeV of beam energy change, with an energy spread of 3 MeV for a 7 mm long (full length) proton bunch. A prototype experiment of a single cell is in preparation at the Next Linear Collider Test Accelerator (NLCTA) at SLAC.
 
slides icon Slides TUXBA4 [3.275 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUXBA4  
About • paper received ※ 27 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYBB2 Manipulating H Beams with Lasers laser, electron, extraction, emittance 309
 
  • A. Rakhman, A.V. Aleksandrov, S.M. Cousineau, T.V. Gorlov, Y. Liu, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
In recent years lasers have been playing a vital role in many H− beam measurements and experiments. This talk will review current state of development of various applications using lasers for manipulating H− ion beams in accelerators. A wide range of applications will be reviewed such as beam diagnostics, laser-assisted charge-exchange injection, generation of arbitrary H0 pulse patterns and others. An overview of ongoing developments and prospects for other laser H− beam interactions will also be given.
 
slides icon Slides TUYBB2 [16.483 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUYBB2  
About • paper received ※ 28 August 2019       paper accepted ※ 12 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBA3 A High-Energy Design for JLEIC Ion Complex booster, electron, collider, linac 341
 
  • B. Mustapha, J.L. Martinez Marin
    ANL, Lemont, Illinois, USA
  • Y.S. Derbenev, F. Lin, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357 for ANL and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
A recent assessment of the scientific merit for a future Electron Ion Collider (EIC) in the US, by the National Academy of Sciences, found that such a facility would be unique in the world and would answer science questions that are compelling, fundamental, and timely. This assessment confirmed the recommendations of the 2015 Nuclear Science Advisory Committee for an EIC with highly polarized beams of electrons and ions, sufficiently high luminosity and variable center-of-mass (CM) energy. The baseline design of Jefferson Lab Electron-Ion Collider (JLEIC) has been updated to 100 GeV CM energy, corresponding to 200 GeV proton energy. We here present a high-energy design for the JLEIC ion complex. It consists of a 135 MeV injector linac, a 6-GeV non figure-8 pre-booster ring and a 40-GeV large ion booster, which could also serve as electron storage ring (e-ring). The energy choice in the accelerator chain is beneficial for a future upgrade to 140 GeV CM energy. The large booster is designed with the same shape and size of the original e-ring allowing for the option of building separate electron and ion rings by stacking them in the same tunnel along with the ion collider ring.
 
slides icon Slides TUZBA3 [5.435 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA3  
About • paper received ※ 03 September 2019       paper accepted ※ 25 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLM24 Electron Heating by Ions in Cooling Rings electron, radiation, scattering, damping 426
 
  • H. Zhao, M. Blaskiewicz
    BNL, Upton, New York, USA
 
  Hadron beam cooling at high energy is a critical technique for Electron-Ion Colliders (EIC). We consider using an electron storage ring for the EIC at BNL. For such a cooler, the electron beam quality plays an important role since it directly determines the cooling rate. Besides the effects of IBS, space charge and synchrotron damping, which are calculable with well known methods, the heating effect by ions also needs to be carefully considered in electron beam dynamics. In this paper, we present an analytical model to calculate the heating rate by ions and give some example calculations. In addition, this model was benchmarked by applying it on the IBS calculation.
* Work supported by States Department of Energy
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM24  
About • paper received ※ 26 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLM37 High Energy Beam Transport Along the 68-m LANSCE 1L Beamline to Optimize Neutron Production target, neutron, beam-transport, storage-ring 446
 
  • P.K. Roy, E.L. Kerstiens, R.J. Macek, C. Pillai, C.E. Taylor
    LANL, Los Alamos, New Mexico, USA
 
  Funding: *Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396.
An 800 MeV 100 µA proton beam is delivered to the Lujan Center, one of five user facilities at the LANSCE linear accelerator center, to generate an intense beam of pulsed neutrons. The Lujan Center beam transport line, known as 1L beamline, is over 68 meters in length, starting from the ROWS01. The beamline is consisted with bending and focusing elements before it reaches the end of the 1L beam optics system, where the beam spot size is nominally 1.5 cm (RMS). The Mark IV target assembly has been designed to optimize the neutron production for the 1L target in the Lujan center to improve the flux and resolution. As part of the safety review of this design, it becomes necessary to know the beam intensity and size on the new target. Using the new measurements of the beamline, calculated beam sizes using the LANL version of the beam envelope code TRANSPORT and CERN code MAD-X are compared. The input beam parameters for the codes were extracted from ORBIT analysis of the proton storage ring beam. Beam envelope measurements were made at various locations throughout the beamline using wire scanners. The predicted beam envelopes and measured data agree within expected errors.
*LA-UR-19-22889
 
poster icon Poster TUPLM37 [5.009 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM37  
About • paper received ※ 23 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO02 Spin Dynamics in the JLEIC Ion Injector Linac linac, solenoid, rfq, focusing 533
 
  • J.L. Martinez Marin, B. Mustapha
    ANL, Lemont, Illinois, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: This work was supported by the U.S. DOE, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 for ANL and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
One of the requirements for the future Electron Ion Col-lider (EIC) is to collide polarized electrons and light ions with at least 70% polarization for each beam. For light ions, polarized ion sources are used for injection to a linac, which is usually the first accelerator in the collider chain. The Jefferson Lab EIC (JLEIC) ion injector linac consists of a low-energy room-temperature section with quadrupole focusing followed by a superconducting linac with solenoid focusing inside long cryomodules. These two sections have different effects on the spin. Spin dy-namics simulation studies are carried out for the JLEIC injector linac in order to preserve and maintain a high degree of polarization for light ion beams for delivery to the booster. The different options to maintain and restore the spin in the different sections of the linac for hydrogen, deuterium and helium ions are presented and discussed. Results from both the Zgoubi and COSY-Infinity codes are presented and compared for every section of the ion linac but the radio-frequency quadrupole (RFQ). Current-ly, a method to simulate the RFQ using Zgoubi is being investigated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO02  
About • paper received ※ 28 August 2019       paper accepted ※ 19 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO03 RHIC Beam Abort System Upgrade Options kicker, vacuum, operation, heavy-ion 536
 
  • W. Fischer, M. Blaskiewicz, M. Mapes, M.G. Minty, C. Montag, S.K. Nayak, V. Ptitsyn, J. Sandberg, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, K. Yip
    BNL, Upton, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
The RHIC ion (polarized proton) beam intensity has increased to 4x (1.1x) of the original design specifications. In 2013 proton beam currents overcame the eddy current reduction design features in the RHIC beam abort system kicker magnets causing ferrite heating and resulting in a reduction of the kicker strength. In 2014, the abort kicker ferrites were changed, the eddy current reduction design was upgraded, and an active ferrite cooling loop installed to prevent heating. For ions the beam dump vacuum window was changed from stainless steel to a titanium alloy and the adjacent beam diffuser block carbon material was changed to allow for higher ion intensities. A thicker beam pipe was installed to prevent secondaries from quenching the adjacent superconducting quadrupole. With these upgrades there is at least a factor 2 of safety margin for the demonstrated intensities to date. For a further increase in the intensity for RHIC and eRHIC we evaluate upgrade options for the beam abort system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO03  
About • paper received ※ 26 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO06 Weak-Strong Beam-Beam Simulation for eRHIC cavity, simulation, luminosity, electron 545
 
  • Y. Luo, G. Bassi, M. Blaskiewicz, W. Fischer, C. Montag, V. Ptitsyn, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the eRHIC, to compensate the geometric luminosity loss due to the crossing angle, crab cavities are to be installed on both sides of the interaction point. When the proton bunch length is comparable to the wavelength of its crab cavities, protons will not be perfectly tilted in the x-z plane. In the article, we employ weak-strong beam-beam interaction model to calculate the proton beam size growth rates and luminosity degradation rate with various machine and time parameters. The goal of these studies is to optimize the the beam-beam related machine and beam parameters of eRHIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO06  
About • paper received ※ 29 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO07 Calculation of Action Diffusion With Crabbed Collision in eRHIC cavity, electron, simulation, luminosity 549
 
  • Y. Luo, G. Bassi, M. Blaskiewicz, W. Fischer, C. Montag, V. Ptitsyn, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the eRHIC, to compensate the geometric luminosity loss due to the crossing angle, crab cavities are to be installed on both sides of the interaction point. When the proton bunch length is comparable to the wavelength of its crab cavities, protons will not be perfectly tilted in the x-z plane. In the article, we develop a simulation code to calculate the transverse action diffusion rate as function of the initial proton longitudinal action. The goal of this study is to identify the contributions from various protons to the overall emittance growth. Tune scan is also performed to locate optimum working points which yield less proton emittance growth.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO07  
About • paper received ※ 29 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLE16 RFA Measurement of E-Cloud Generation Process at Fermilab Main Injector electron, acceleration, simulation, ECR 595
 
  • Y. Ji
    IIT, Chicago, Illinois, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
  • R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  Fermilab aims to provide greater beam power for the neutrino physics program. As the beam power increases, the unwanted production of secondary electrons in the beam pipe, known as ‘electron cloud’ or ‘E-cloud’ may become disruptive to high intensity operation. Instrumentation has been deployed in the Fermilab Main Injector (MI) to study E-cloud. One of these is a Retard Field Analyzer (RFA) that can be used to directly measure E-cloud generation at the location of the instrument. Studies of the dependence of E-cloud on beam intensity and bunch length have been carried out. The experimental results are compared to POSINST simulations. These simulations are guided by measurements from a Secondary Electron Yield (SEY) test stand installed in the MI to measure the SEY of materials such as the beam pipe stainless steel. The SEY has a strong influence on the E-cloud density. Results of these comprehensive studies comparing the RFA data with realistic MI simulations will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE16  
About • paper received ※ 28 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA2 Recent Results and Opportunities at the IOTA Facility electron, experiment, radiation, undulator 599
 
  • A.L. Romanov, D.R. Broemmelsiek, K. Carlson, D.J. Crawford, N. Eddy, D.R. Edstrom, J.D. Jarvis, V.A. Lebedev, S. Nagaitsev, J. Ruan, J.K. Santucci, V.D. Shiltsev, G. Stancari, A. Valishev, A. Warner
    Fermilab, Batavia, Illinois, USA
  • S. Chattopadhyay, S. Szustkowski
    Northern Illinois University, DeKalb, Illinois, USA
  • Y.K. Kim, N. Kuklev, I. Lobach
    University of Chicago, Chicago, Illinois, USA
 
  The Integrable Optics Test Accelerator (IOTA) was recently commissioned as part of the Fermilab Accelerator Science and Technology (FAST) facility. The IOTA ring was briefly operated with electrons at 47 MeV followed by a 6-months run with 100 MeV electrons. The main goal of the first run was to study beam dynamics in the integrable lattices with elliptical nonlinear magnets and in the quasi-integrable case with profiled octupole channel. The flexibility of the IOTA ring allowed a wide range of complementary studies, such as experiments with a single electron; studies of fluctuations in undulator radiation and operation with low emittance beams. Over the next year the proton injector will be installed and two runs carried out. One run will be dedicated to the refinement of nonlinear experiments and another will be dedicated to the proof-of-principle demonstration of Optical Stochastic Cooling.  
slides icon Slides WEXBA2 [12.702 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEXBA2  
About • paper received ※ 31 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYBB1 ELENA Commissioning electron, MMI, experiment, antiproton 626
 
  • D. Gamba, M.E. Angoletta, P. Belochitskii, L. Bojtár, F. Butin, C. Carli, B. Dupuy, Y. Dutheil, T. Eriksson, P. Freyermuth, C. Grech, M. Hori, J.R. Hunt, M. Jaussi, L.V. Jørgensen, B. Lefort, S. Pasinelli, L. Ponce, G. Tranquille
    CERN, Meyrin, Switzerland
  • R. Gebel
    FZJ, Jülich, Germany
  • C. Grech
    University of Malta, Information and Communication Technology, Msida, Malta
  • M. Hori
    MPQ, Garching, Munich, Germany
 
  The Extra Low ENergy Antiproton storage ring (ELENA) is an upgrade project at the CERN AD (Antiproton Decelerator). ELENA will further decelerate the 5.3 MeV antiprotons coming from the AD down to 100 keV. ELENA features electron cooling for emittance control during deceleration thus preserving the beam intensity and allowing to extract bright bunches towards the experiments. The lower energy will allow for increasing the antiproton trapping efficiency up to two orders of magnitude, which is typically less than 1% with the present beam from AD. The ring was completed with the installation of the electron cooler at the beginning of 2018. Decelerated beams with characteristics close to the design values were obtained before the start of CERN Long Shutdown 2 (LS2). During LS2 electrostatic transfer lines from the ELENA ring to the experimental zones will be installed, replacing the magnetic transfer lines from the AD ring. The latest results of commissioning with H and antiprotons and the first observation of electron cooling in ELENA will be presented, together with an overview of the project and status and plans for LS2 and beyond.  
slides icon Slides WEYBB1 [20.792 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEYBB1  
About • paper received ※ 27 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYBB3 Foil Scattering Model for Fermilab Booster scattering, injection, booster, operation 632
 
  • C.M. Bhat, S. Chaurize, J.S. Eldred, V.A. Lebedev, S. Nagaitsev, K. Seiya, C.-Y. Tan, R. Tesarek
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
At the Fermilab Booster, and many other proton facilities, an intense proton beam is accumulated by injection an H beam through a stripping foil. The circulating beam scatters off the injection beam and large-angle Coulomb scattering leads to uncontrolled losses concentrated in the first betatron period. We measure the foil scattering rate in the Booster as a function of linac current, number of injection-turns, and time on injection foil. We find that current Booster operations has a 1% foil scattering loss rate and we make projections for the Proton Improvement Plan II (PIP-II) injector upgrade. We find that accurate modeling of the foil scattering loss must account for beam emittance in conjunction with the scattering rate and ring acceptance. Estimate of beam emittance at injection are discussed.
 
slides icon Slides WEYBB3 [5.690 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEYBB3  
About • paper received ※ 28 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYBB6 Design Considerations and Operational Features of the Collimators for the Fermilab Main Injector and Recycler collimation, radiation, controls, operation 642
 
  • B.C. Brown, P. Adamson, R. Ainsworth, D. Capista, K.J. Hazelwood, I. Kourbanis, N.V. Mokhov, D.K. Morris, V.S. Pronskikh, I.L. Rakhno, I.S. Tropin, M. Xiao, M.-J. Yang
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The Fermilab Main Injector system delivers 700 kW of 120 GeV Proton beam for neutrino experiments. Since 2013 this has been achieved using slip stacking accumulation in the Recycler with up to 12 batches from the Fermilab Booster per Main Injector Ramp Cycle. To control activation from beam loss, collimation systems in the Booster to Recycler transfer line, in the Recycler and in the Main Injector are employed. Residual radiation measurements around the ring with detailed studies at the collimators are required to maintain adequate loss control. We will review design considerations, operational parameters and activation results for more than ten years of operation. Simulations with MARS15 are used to explore the activation rates and the isotopic composition of the resulting activation.
 
slides icon Slides WEYBB6 [12.713 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEYBB6  
About • paper received ※ 30 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLM06 NuMI Beam Muon Monitor Data Analysis and Simulation for Improved Beam Monitoring target, simulation, diagnostics, experiment 677
 
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illinois, USA
  • A. Bashyal
    Oregon State University, Corvallis, USA
  • T.J. Rehak
    Drexel University, Philadelphia, Pennsylvania, USA
  • D.A. Wickremasinghe, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • Y. Yu
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by US DOE grants DE-SC0019264 and DE-SC0017815 and Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359.
The NuMI muon monitors (MMs) are a very important diagnostic tool for monitoring the stability of the neutrino beam used by the NOvA experiment at Fermilab. The goal of our study is to maintain the quality of the MM signal and to establish the correlations between the neutrino and muon beam profile. This study could also inform the LBNF decision on the beam diagnostic tools. We report on the progress of beam scan data analysis (beam position, spot size, and magnetic horn current scan) and comparison with the simulation outcomes.
 
poster icon Poster WEPLM06 [6.150 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM06  
About • paper received ※ 30 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH10 Efficiency Estimation for Sequential Excitation Laser Stripping of H Beam laser, experiment, electron, cavity 827
 
  • T.V. Gorlov, A.V. Aleksandrov, S.M. Cousineau, Y. Liu, A. Rakhman
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UTBattelle, LLC, under contract DEAC0500OR22725 for the U.S. Department of Energy.
A new laser stripping scheme for charge exchange injection of H beam is considered. The sequential scheme for the planned demonstration experiment includes two step excitation that requires much smaller laser power compared to the traditional 1-step excitation. The new scheme can be applied to a wider range of H beam energies and provides more flexibility on the choice of laser frequency. In this paper we discuss the two-step excitation method and estimate laser stripping parameters and stripping efficiency for the SNS accelerator and its future H energy upgrade to 1.3 GeV.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH10  
About • paper received ※ 22 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH15 Light Ion Injector for NICA cavity, linac, rfq, DTL 834
 
  • H. Höltermann, H. Hähnel, B. Koubek, H. Podlech, U. Ratzinger, A. Schempp, D. Strehl, R. Tiede
    BEVATECH, Frankfurt, Germany
  • M. Busch, M. Schuett
    IAP, Frankfurt am Main, Germany
  • A.V. Butenko, D.E. Donets, A.D. Kovalenko, K.A. Levterov, D.A. Lyuosev, A.A. Martynov, D.O. Ponkin, K.V. Shevchenko, I.V. Shirikov, A.O. Sidorin, G.V. Trubnikov
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • B.V. Golovenskiy, A. Govorov, V.V. Kobets, E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  The Nuclotron ring of the NICA project will get a new light ion injector linac (LILac) for protons and ions with a mass to charge ratio up to 3. The LILac will consist of 2 sections: A 600 A keV RFQ followed by an IH-type DTL up to 7 AMeV, and a postaccelerator IH-cavity for protons only - up to 13 MeV. A switching magnet will additionally allow 13 MeV proton beam injection into a future superconducting testing section. The pulsed Linac up to 7 AMeV and including the postaccelerator for protons up to 13 MeV will be developed in collaboration between JINR and Bevatech GmbH. The technical design of that Linac is discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH15  
About • paper received ※ 29 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH19 Record Fast Cycling Accelerator Magnet Based on High Temperature Superconductor cryogenics, booster, collider, operation 845
 
  • H. Piekarz, J.N. Blowers, S. Hays, V.D. Shiltsev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
We report on the prototype High Temperature Superconductor (HTS) based accelerator magnet capable to operate at 12 T/s B-field ramping rate with a very low supporting cryogenic cooling power thus indicating a feasibility of its application in large accelerator requiring high repetition rate and high average beam power. The magnet is designed to simultaneously accelerate two particle beams in the separate beam gaps energized by a single conductor. The design, construction and the power test arrangement of a prototype of this fast-cycling HTS based accelerator magnet are presented. As example, the cryogenic power loss limit measured in the magnet power test is discussed in terms of feasibility of application of such a magnet for the construction of an 8 GeV dual-beam proton booster accelerator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH19  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLO12 Design of a PIP-II Era Mu2e Experiment target, experiment, solenoid, collider 865
 
  • M.A. Cummings, R.J. Abrams, T.J. Roberts
    Muons, Inc, Illinois, USA
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  We present an alternative Mu2e-II production scheme for the Fermilab PIP-II era based on production schemes we devised for muon-collider and neutrino-factory front ends. Bright muon beams generated from sources designed for muon collider and neutrino factory facilities have been shown to generate two orders of magnitude more muons per proton than the current Mu2e production target and solenoid. In contrast to the current Mu2e, the muon collider design has forward-production of muons from the target. Forward production from 8 GeV protons would include high energy antiprotons, pions and muons, which would provide too much background for the Mu2e system. In contrast, the 800 MeV PIP-II beam does not have sufficient energy to produce antiprotons, and other secondaries will be at a low enough energy that they can be ranged out with an affordable shield of ~ 2 meters of concrete.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLO12  
About • paper received ※ 01 September 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBA2 The MYRRHA Project cavity, linac, rfq, operation 945
 
  • H. Podlech, P. Britten, K. Kümpel, S. Lamprecht, N.F. Petry
    IAP, Frankfurt am Main, Germany
  • M. Abs, J. Brison
    IBA, Louvain-la-Neuve, Belgium
  • C. Angulo, J. Belmans, F. Doucet, A. Gatera, F. Pompon, A. Ponton, D. Vandeplassche
    SCK•CEN, Mol, Belgium
  • A. Apollonio, J.A. Uythoven
    CERN, Meyrin, Switzerland
  • A. Bechtold
    NTG Neue Technologien GmbH & Co KG, Gelnhausen, Germany
  • J.-L. Biarrotte, C. Joly, D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • F. Bouly
    LPSC, Grenoble Cedex, France
  • P. Fernandez Ramos, A.E. Pitigoi
    Empresarios Agrupados, Madrid, Spain
  • H. Höltermann, U. Ratzinger
    BEVATECH, Frankfurt, Germany
  • T. Junquera
    Accelerators and Cryogenic Systems, Orsay, France
  • R. Modic
    Cosylab, Ljubljana, Slovenia
  • F. Senée, D.U. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
  • C. Zhang
    GSI, Darmstadt, Germany
 
  The main objective of the MYRRHA project at SCK•CEN, the Belgian Nuclear Research Centre, is to demonstrate the feasibility of nuclear waste transmutation using an Accelerator Driven System (ADS). It is based on a High Power CW operated 600 MeV proton Linac with an average beam power of 2.4 MW. Due to the coupling of the accelerator with a subcritical reactor, a major concern is reliability and availability of the accelerator. The MYRRHA Linac consists of a room temperature 17 MeV Injector based on CH-cavities and the superconducting main Linac using different RF structures as Single Spokes, Double-Spokes and elliptical cavities. In 2017, it has been decided to stage the project and to start with the construction of a 100 MeV Linac (Injector and Single Spoke section) including a 400 kW proton target station. This facility (MINERVA) will be operational in 2026 aiming to evaluate the reliability potential of the 600 MeV Linac. The Front-End consisting of an ECR source, LEBT and 1.5 MeV RFQ is already operational while the first 7 CH-cavities are under construction. The presentation gives an overview about the MYRRHA Project, its challenges and the status of construction and testing.  
slides icon Slides THZBA2 [27.209 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THZBA2  
About • paper received ※ 27 August 2019       paper accepted ※ 15 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXBB1 Rare Isotope Beams and High-power Accelerators target, linac, heavy-ion, neutron 993
 
  • J. Wei
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511.
Facilities for rare isotope beams provide tools for nuclear science research and tools for applications ranging from fundamental nuclear structure and dynamics to societal benefits in medicine, energy, material sciences and national security. State-of-the-art rare isotope facilities can be based on an isotope separation on-line (ISOL) approach using mostly high-power proton beams striking a thick target where the isotopes are produced in the target, or an in-flight fragment separation (IF) approach using high-power heavy ion beams striking upon a thinner target where the isotopes continue out of the target followed by fragment separation. This tutorial class introduces high power hadron accelerators as driver machines for rare isotope production, summarizing the key design philosophy, physical and technical challenges, and current world-wide development status. As an example, the Facility for Rare Isotope Beams (FRIB) project is used to illustrate the process of establishing such facilities.
 
slides icon Slides FRXBB1 [41.291 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-FRXBB1  
About • paper received ※ 02 September 2019       paper accepted ※ 17 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)