Paper | Title | Other Keywords | Page |
---|---|---|---|
MOYBB2 | Recent Advance in ECR Ion Sources | ion-source, plasma, operation, electron | 31 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. High continuous wave (cw) current of highly charged ion beams are required for several heavy ion accelerator facilities including the Facility for Rare Isotope Beams (FRIB). In most cases, Electron-Cyclotron-Resonance (ECR) ion sources remain the only ion source capable to meet the beam intensity requirement for these facilities. Performances of ECR ion source have increased by several order of magnitude since their inception in the 1970s mostly driven by increasing the resonance frequency with today current state of the art ECR ion source operating from 24 to 28 GHz. This paper provides an overview of recent advance in the design and operation of ECR ion source including plans to develop the next generation of ion source capable of operating above 40 GHz. A detailed account of the design and status of the new superconducting ECR ion source in construction for FRIB will also be reported. |
|||
![]() |
Slides MOYBB2 [9.483 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBB2 | ||
About • | paper received ※ 02 September 2019 paper accepted ※ 16 November 2020 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPLS01 | Spectroscopic Correlations to Resistive Switching of Ion Beam Irradiated Films | radiation, experiment, scattering, laser | 160 |
|
|||
Researchers concentrated on resistive random access memories (RRAMs) due to excellent scalability, high integration density, quick switching, etc*,**. Intrinsic physical phenomenon of RRAMs is resistive switching. In this work, ion beam irradiation was used as a tool to modify resistive switching of pulsed laser deposited (PLD) Y0.95Ca0.05MnO3/Si films. Ion irradiation induced optimal resistive switching with spectroscopic correlations has been attributed to oxygen vacancy gradient. Resistive switching ratio is estimated to be increased for the film irradiated with fluence 1×1011 ions/cm2 due to irradiation induced strain and oxygen vacancies verified by X’ray diffraction (XRD), Raman, atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS) and near-edge X-ray absorption fine structure (NEXAFS) measurements. Strain relaxation and oxygen vacancy annihilation have been realized for higher fluence (1×1012 and 1×1013 ions/cm2) owing to local annealing effect. Present study suggests that the films understudy can be considered as emerging candidates for RRAMs.
* X.J. Zhu et al., Front. Mater. Sci. 6 (2012) 183, 206. ** D.S. Jeong et al., Rep. Prog. Phys. 75 (2012) 076502:1,31. |
|||
![]() |
Poster MOPLS01 [0.745 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLS01 | ||
About • | paper received ※ 26 August 2019 paper accepted ※ 16 November 2020 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLS08 | Analysis of Allison Scanner Phase Portraits Using Action-Phase Coordinates | MEBT, optics, quadrupole, focusing | 467 |
|
|||
Allison scanners provide detailed information on the beam transverse phase space. An effective way for analyzing the beam distribution from these measurements is to use action-phase coordinates, where beam propagation in a linear lattice is reduced to advancing the phase. This report presents such analysis for measurements performed with a 2.1 MeV, 5 mA H− beam in the MEBT of the PIP2IT test accelerator at Fermilab. In part, with the choice of calculating the Twiss parameters over the high intensity portion of the beam, the beam core is found to be phase-independent with intensity decreasing exponentially with action, while the beam tails exhibit a clear phase dependence that is stable over the beam line. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLS08 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLE16 | RFA Measurement of E-Cloud Generation Process at Fermilab Main Injector | electron, acceleration, simulation, proton | 595 |
|
|||
Fermilab aims to provide greater beam power for the neutrino physics program. As the beam power increases, the unwanted production of secondary electrons in the beam pipe, known as ‘electron cloud’ or ‘E-cloud’ may become disruptive to high intensity operation. Instrumentation has been deployed in the Fermilab Main Injector (MI) to study E-cloud. One of these is a Retard Field Analyzer (RFA) that can be used to directly measure E-cloud generation at the location of the instrument. Studies of the dependence of E-cloud on beam intensity and bunch length have been carried out. The experimental results are compared to POSINST simulations. These simulations are guided by measurements from a Secondary Electron Yield (SEY) test stand installed in the MI to measure the SEY of materials such as the beam pipe stainless steel. The SEY has a strong influence on the E-cloud density. Results of these comprehensive studies comparing the RFA data with realistic MI simulations will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE16 | ||
About • | paper received ※ 28 August 2019 paper accepted ※ 06 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPLH06 | Commissioning Status of the FRIB Front End | rfq, MMI, linac, cavity | 813 |
|
|||
Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. The FRIB Front End was successfully commissioned in 2017 with commissioning goals achieved and Key Per-formance Parameters (KPP) demonstrated for both 40Ar9+ and 86Kr17+ beams. Two more ion species, 20Ne6+ and 129Xe26+, have been commissioned on the Front End and delivered to the superconducting linac during the beam commissioning of Linac Segment 1 (LS1) in March 2019. In August 2019, Radio Frequency Quadrupole (RFQ) conditioning reached the full design power of 100 kW continuous wave (CW) that is required to accelerate Ura-nium beams. Start-up/shutdown procedures and opera-tional screens were developed for the Front End subsys-tems for trained operators, and auto-start and RF fast re-covery functions have been implemented for the Front End RFQ and bunchers. In this paper, we will present the current commissioning status of the Front End, and per-formance of the main technical systems, such as the ECR ion source and RFQ. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH06 | ||
About • | paper received ※ 01 September 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||