Paper | Title | Other Keywords | Page |
---|---|---|---|
MOZBA2 | Operational Experience with Superconducting Undulators at APS | operation, photon, vacuum, radiation | 57 |
|
|||
Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. APS has been developing superconducting undulators for over a decade. Presently, two planar and one helical device are in operation in the APS storage ring, and a number of devices will be installed in the APS Upgrade ring. All superconducting devices perform with very high reliability and have very minor effect on the storage ring operation. To achieve this, a number of storage ring modifications had to be done, such as introduction of the beam abort system to eliminate device quenches during beam dumps, and lattice and orbit modifications to allow for installation of the small horizontal aperture helical device with magnet coils in the plane of synchrotron radiation. |
|||
![]() |
Slides MOZBA2 [3.424 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBA2 | ||
About • | paper received ※ 02 September 2019 paper accepted ※ 19 November 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOZBA3 | Strongly Tapered Helical Undulator System for TESSA-266 | electron, experiment, laser, permanent-magnet | 63 |
|
|||
Funding: DOE SBIR Award No. DE-SC0017102 RadiaBeam, in collaboration with UCLA and Argonne National Laboratory (ANL), is developing a strongly tapered helical undulator system for the Tapering Enhanced Stimulated Superradiant Amplification experiment at 266 nm (TESSA-266). The experiment will be carried out at the APS LEA facility at ANL and aims at the demonstration of very high energy conversion efficiency in the UV. The undulator system was designed by UCLA, engineered by RadiaBeam, and is presently in fabrication at RadiaBeam. The design is based on a permanent magnet Halbach scheme and includes a short 30 cm long buncher section and four 1 m long undulator sections. The undulator period is fixed at 32 mm and the magnetic field amplitude can be tapered by tuning the gap along the interaction. Each magnet can be individually adjusted by 1.03 mm, offering up to 25% magnetic field tunability with a minimum gap of 5.58 mm. A custom designed 316L stainless steel beampipe runs through the center with a clear aperture of 4.5 mm. This paper discusses the design and engineering of the undulator system, fabrication status, and plans for magnetic measurements, and tuning. |
|||
![]() |
Slides MOZBA3 [8.942 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBA3 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOZBA4 | Recent Developments in High Power High Brightness Double Bunch Self-Seeding at LCLS-II | FEL, photon, electron, simulation | 67 |
|
|||
We discuss the power and spectral characteristics of an X-ray FEL, LCLS-II, operating in a double bunch self-seeding scheme (DBFEL). We show that it can reach very high power levels in the photon energy range of 4-8 keV. We discuss the system implementation on LCLS-II, including the design of a four-bounce crystal monochromator, and linac wakefields effects. Finally, we offer multiple applications of the DBFEL for high-field QED, AMO physics and single particle imaging. | |||
![]() |
Slides MOZBA4 [3.175 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBA4 | ||
About • | paper received ※ 02 September 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPLM23 | Senis Hall Probe Speed Dependence Issues | wiggler, insertion-device, insertion, coupling | 155 |
|
|||
An extensive test of a Senis 2-axis Hall probe was done at the Advanced Photon Source. Strong dependence of the measurement data on the speed of the sensor is observed. Discussion of the possible reason of such dependence is provided.
Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357 |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM23 | ||
About • | paper received ※ 21 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPLO01 | A Beam Spreader System for LCLS-II | kicker, septum, FEL, electron | 236 |
|
|||
For the LCLS-II project, the SLAC National Accelerator Laboratory is installing a new superconducting RF linac capable of continuously delivering 4 GeV electron bunches spaced 1.1 microseconds apart. A spreader system is required to distribute the beam between a soft X-ray or hard X-ray undulator, and a beam dump. An additional beam diverter is required in the front end of the linac to divert 100 MeV electrons to a diagnostic line. Both the spreader and diagnostic diversion systems are designed to operate on a bunch by bunch basis via the combination of fast kickers and a Lambertson septum. This paper presents a summary of the optics, kicker, and septum design. Of specific interest is the unique challenge associated with building a high repetition, high stability, spreader capable of diverting a single bunch without disturbing neighboring bunches. Additional discussion includes the application of the spreader technology to the proposed DASEL/S30XL beamline. This beamline will acceptμbunches evenly spaced between the undulator bound bunches, thus requiring a kicker with the same repetition rate as LCLS-II but a pulse width extended to approximately 600 ns. | |||
![]() |
Poster MOPLO01 [1.256 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO01 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLM26 | Progress Toward a Laser Amplifier for Optical Stochastic Cooling | laser, radiation, experiment, synchrotron-radiation | 434 |
|
|||
Optical Stochastic Cooling (OSC) is a method of beam cooling using optical frequencies which compresses the phase space of the beam by correcting the deviation of each particle’s momentum. A particle bunch passing through an undulator produces radiation which is amplified and provides the corrective energy kick. In this project, we are testing a method of amplifying synchrotron radiation (SR) for the eventual use in OSC. The SR is amplified by passing through a highly-doped Chromium:Zinc Selenide (Cr:ZnSe) crystal which is pumped by a Thulium fiber laser. The SR will be produced by one of the bending magnets of the Advanced Photon Source. The first step is to detect and measure the power of SR using a photo-diode. The gain is then determined by measuring the radiation amplified after the single-pass through the crystal. This serves as a preliminary step to investigate the performance of the amplification of beam-induced radiation fields. The planned experiment is an important step towards achieving active OSC in a proof-of-principle demonstration in IOTA. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM26 | ||
About • | paper received ※ 02 September 2019 paper accepted ※ 13 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLS03 | Advanced Photon Source Upgrade | vacuum, photon, storage-ring, operation | 453 |
|
|||
The Advanced Photon Source Upgrade (APS-U) in-cludes four straight sections equipped with full length Superconducting Undulators (SCUs). These sections require vacuum systems that must span 5.383 meters at nominal length, accommodate the SCU device, and ac-commodate additional magnets for the canted configura-tions. In the direction of the beam, the upstream portion of the vacuum system is a copper chamber doubling as a photon absorber with a design that is manufactured to allow a 13.5 mm canting magnet gap. This portion of the vacuum system operates at room temperature and shad-ows the length of the vacuum chamber that operates within the cryostat at 20K. The vacuum chamber inside the cryostat is a weldment including a machined alumi-num extrusion allowing for an 8mm magnetic gap, stain-less steel thermal insulators, copper shields, and bel-lows/flange assembly. The vacuum system includes an-other room temperature copper chamber and absorber on the downstream end of the straight section. The vacuum system provides Ultra-high Vacuum (UHV) continuity through the straight section, connecting the storage ring vacuum systems. | |||
![]() |
Poster TUPLS03 [0.974 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLS03 | ||
About • | paper received ※ 26 August 2019 paper accepted ※ 13 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLS04 | Re-Evaluation of the NSLS-II Active Interlock Window | insertion, insertion-device, wiggler, vacuum | 456 |
|
|||
Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy The NSLS-II Active Interlock is the system which protects the NSLS-II Storage Ring vacuum chamber from damage due to synchrotron radiation. The Active Interlock measures the beam position and angle at all insertion devices and issues a beam dump if the beam is outside of the pre-defined window. The window is determined by thermal analysis of vacuum apertures and considers the effects of local magnets such as canting magnets, etc. Recently, it was realized that the insertion device correction coils where not considered in the initial evaluation of the envelope. The purpose of these coils is to correct for the orbit deviations caused by imperfections in the insertion devices that steer the beam. The usual effect is to negate any angle induced by the device, however, if the coil is not set properly the beam may have a larger angle than permitted by the Active Interlock even though the angle calculation does not show it. In this paper we discuss the effect of the insertion device coils on the electron beam and the steps taken to account for this effect in the Active Interlock. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLS04 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 16 November 2020 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLH01 | Status of the Superconducting Undulator Program at the Advanced Photon Source | operation, storage-ring, alignment, photon | 490 |
|
|||
Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Since 2013 there has been at least one superconducting undulator (SCU) in operation at the Advanced Photon Source (APS), currently there are two planar SCUs and one helical SCU. The combined operational experience of SCUs at the APS is more than 11 years and counting. Through all these years, APS SCUs operated with the predicted or better than predicted radiation performance and with 99% availability. With this demonstrated reliability and experimentally confirmed spectral performance, the APS upgrade project is planning on leveraging the advantages of SCU technology. The present planar SCUs are comprised of ~1.1-m-long magnets, each operated within a 2-m-long cryostat, while the planar SCUs for the upgrade will have two ~1.8-m-long magnets operating within a 5-m-long cryostat. Progress is also being made in other areas of SCU development with work on an arbitrary polarizing SCU, referred to as SCAPE, and a planar SCU wound with Nb3Sn superconductor. A Nb3Sn SCU is being designed with two 1.3-m-long magnets within a 5-m-long cryostat, and installation is planned for 2021. Also under development are the alignment and magnetic measurement systems for use with the 5-m-long cryostat. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLH01 | ||
About • | paper received ※ 26 August 2019 paper accepted ※ 02 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLH04 | Feasibility Study of Fast Polarization Switching Superconducting Undulator | polarization, simulation, coupling, power-supply | 497 |
|
|||
Funding: U.S. Department of Energy, Office of Science, under Contract No. DE-ACO2-O6CH11357. Polarization switching x-ray probes coupled with high-flux provide a unique tool to unraveling the nature of electronic heterogeneity and drive discovery of novel phases of electronic matter. Superconducting Arbitrary Polarization Emitter (SCAPE) is a new concept for a universal undulator, which offers linear or circular polarization states in one device and is ideal for experiments that require polarization switching. Polarization switching relies on modulating the magnetic field in the undulator. This, however, inevitably incurs losses in superconductors, which need to be mitigated. In this study, feasibility of fast switching SCAPE has been investigated through fabricating and testing several short prototype magnets wound with different superconductors and new design concepts. The losses at different frequencies and field amplitudes are measured and details will be discussed. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLH04 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLH10 | Fabrication Progress of a Superconducting Helical Undulator with Superimposed Focusing Gradient for High Efficiency Tapered X-Ray FELs | FEL, quadrupole, vacuum, focusing | 509 |
|
|||
Funding: This work is supported by DOE grant no. DE-SC0017072, "Superconducting Helical Undulator with Superimposed Focusing Gradient for High Efficiency Tapered X-Ray FELs" The Advanced Gradient Undulator (AGU) represents a potentially significant advancement in x-ray conversion efficiency for x-ray FELs. This increase in efficiency would have broad implications on the capabilities of x-ray light sources. To achieve this high conversion efficiency, the inner diameter of the undulator coil is a mere 7mm, even with the use of superconducting coils. To accommodate the beamline at the Advanced Photon Source this yields in a chamber with a wall thickness of 0.5mm fabricated from Aluminum. With a period of 2cm and a conductor position tolerance of <100 µm over a length of >80cm at 4.2K, the engineering and fabrication challenges for the undulator alone are substantial. We will discuss these fabrication challenges and present solutions to meet the tolerances required for desired performance, and provide an update on current progress of the construction of a section of the AGU insertion device. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLH10 | ||
About • | paper received ※ 28 August 2019 paper accepted ※ 16 November 2020 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEXBA2 | Recent Results and Opportunities at the IOTA Facility | electron, experiment, radiation, proton | 599 |
|
|||
The Integrable Optics Test Accelerator (IOTA) was recently commissioned as part of the Fermilab Accelerator Science and Technology (FAST) facility. The IOTA ring was briefly operated with electrons at 47 MeV followed by a 6-months run with 100 MeV electrons. The main goal of the first run was to study beam dynamics in the integrable lattices with elliptical nonlinear magnets and in the quasi-integrable case with profiled octupole channel. The flexibility of the IOTA ring allowed a wide range of complementary studies, such as experiments with a single electron; studies of fluctuations in undulator radiation and operation with low emittance beams. Over the next year the proton injector will be installed and two runs carried out. One run will be dedicated to the refinement of nonlinear experiments and another will be dedicated to the proof-of-principle demonstration of Optical Stochastic Cooling. | |||
![]() |
Slides WEXBA2 [12.702 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEXBA2 | ||
About • | paper received ※ 31 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPLM05 | Continuous Monitoring of Spectral Features of Electron Beam Orbit Motion at NSLS-II | operation, controls, feedback, cavity | 673 |
|
|||
NSLS-II ring is equipped with state-of-the art beam position monitors (BPMs) which are indispensable in all aspects of machine studies and operations. Among other data, they can provide, on demand, up to 10 seconds of fast-acquisition (FA) data, sampled at ~10 kHz. Analysis of these data in time, frequency and spatial domains provides valuable insights into orbit stability, locations of residual noise sources, performance of feedback systems, etc. In addition, changes in FA signal spectral features are often the earliest indicators of potential equipment problems. This is why we recently implemented an Input / Output Controller (IOC) software that runs during regular user operation, and, once a minute, acquires 10 second buffers of FA data from 180 BPMs around the ring. These buffers are processed to determine the amplitudes and frequencies of the strongest spectral peaks as well as some other measures of fast beam orbit noise. Processed results can be monitored in real time and are also archived for offline analysis and troubleshooting. In this paper we discuss the implementation of this system and the insights we gained from it over about two years of operations. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM05 | ||
About • | paper received ※ 31 August 2019 paper accepted ※ 02 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THXBA2 | Analysis of Beam Position Monitor Requirements with Bayesian Gaussian Regression | optics, brightness, quadrupole, emittance | 912 |
|
|||
Funding: This research is supported by U.S. Department of Energy under Contract No. DE-SC0012704, and the NSF under Cooperative Agreement PHY-1102511. With a Bayesian Gaussian regression approach, a systematic method for analyzing a storage ring’s beam position monitor (BPM) system requirements has been developed. The ultimate performance of a ring-based accelerator, based on brightness or luminosity, is determined not only by global parameters, but also by local beam properties at some particular points of interest (POI). BPMs used for monitoring the beam properties, however, can not be located at these points. Therefore, the underlying and fundamental purpose of a BPM system is to predict whether the beam properties at POIs reach their desired values. The prediction process is a regression problem with BPM readings as the training data, but containing random noise. A Bayesian Gaussian regression approach can determine the probability distribution of the predictive errors, which can be used to conversely analyze the BPM system requirements. This approach is demonstrated by using turn-by-turn data to reconstruct a linear optics model, and predict the brightness degradation for a ring-based light source. The quality of BPMs was found to be more important than their quantity in mitigating predictive errors. |
|||
![]() |
Slides THXBA2 [3.205 MB] | ||
![]() |
Poster THXBA2 [7.083 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THXBA2 | ||
About • | paper received ※ 16 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THYBA5 | Study of Fluctuations in Undulator Radiation in the IOTA Ring at Fermilab | experiment, radiation, electron, wiggler | 934 |
|
|||
We study turn-by-turn fluctuations in the number of emitted photons in an undulator, installed in the IOTA electron storage ring at Fermilab, with an InGaAs PIN photodiode and an integrating circuit. In this paper, we present a theoretical model for the experimental data from previous similar experiments and in our present experiment, we attempt to verify the model in an independent and a more systematic way. Moreover, in our experiment we consider the regime of very small fluctuation when the contribution from the photon shot noise is significant, whereas we believe it was negligible in the previous experiments. Accordingly, we present certain critical improvements in the experimental setup that let us measure such a small fluctuation. | |||
![]() |
Slides THYBA5 [8.048 MB] | ||
![]() |
Poster THYBA5 [3.079 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THYBA5 | ||
About • | paper received ※ 24 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||