Keyword: collider
Paper Title Other Keywords Page
MOOHC2 The US Electron Ion Collider Accelerator Designs electron, polarization, luminosity, proton 1
 
  • A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Bruker, A. Camsonne, E. Daly, P. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, J.M. Grames, J. Guo, F.E. Hannon, L. Harwood, S. Henderson, H. Huang, A. Hutton, K. Jordan, D.H. Kashy, A.J. Kimber, G.A. Krafft, R. Lassiter, R. Li, F. Lin, M.A. Mamun, F. Marhauser, R. McKeown, T.J. Michalski, V.S. Morozov, P. Nadel-Turonski, E.A. Nissen, G.-T. Park, H. Park, M. Poelker, T. Powers, R. Rajput-Ghoshal, R.A. Rimmer, Y. Roblin, D. Romanov, P. Rossi, T. Satogata, M.F. Spata, R. Suleiman, A.V. Sy, C. Tennant, H. Wang, S. Wang, C. Weiss, M. Wiseman, W. Wittmer, R. Yoshida, H. Zhang, S. Zhang, Y. Zhang, Z.W. Zhao
    JLab, Newport News, Virginia, USA
  • D.T. Abell, D.L. Bruhwiler, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, A. Kiselev, V. Litvinenko, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, E. Wang, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • D.P. Barber
    DESY, Hamburg, Germany
  • I.V. Bazarov
    Cornell University, Ithaca, New York, USA
  • G.I. Bell, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • Y. Cai, Y.M. Nosochkov, A. Novokhatski, G. Stupakov, M.K. Sullivan, C.-Y. Tsai
    SLAC, Menlo Park, California, USA
  • Z.A. Conway, M.P. Kelly, B. Mustapha, U. Wienands, A. Zholents
    ANL, Lemont, Illinois, USA
  • S.U. De Silva, J.R. Delayen, H. Huang, C. Hyde, S. Sosa, B. Terzić
    ODU, Norfolk, Virginia, USA
  • K.E. Deitrick, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • B. Erdelyi, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.D. Fox
    Stanford University, Stanford, California, USA
  • J. Gerity, T.L. Mann, P.M. McIntyre, N. Pogue, A. Sattarov
    Texas A&M University, College Station, USA
  • E. Gianfelice-Wendt, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
  • Y. Hao, P.N. Ostroumov, A.S. Plastun, R.C. York
    FRIB, East Lansing, Michigan, USA
  • T. Mastoridis
    CalPoly, San Luis Obispo, California, USA
  • J.D. Maxwell, R. Milner, M. Musgrave
    MIT, Cambridge, Massachusetts, USA
  • J. Qiang, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • D. Teytelman
    Dimtel, Redwood City, California, USA
  • R.C. York
    NSCL, East Lansing, Michigan, USA
 
  With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.  
slides icon Slides MOOHC2 [14.774 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2  
About • paper received ※ 29 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYBA5 Weak-Strong Simulation of Beam-Beam Effects in Super Proton-Proton Collider proton, simulation, luminosity, resonance 22
 
  • L.J. Wang, J.Y. Tang
    IHEP, Beijing, People’s Republic of China
  • T. Sen
    Fermilab, Batavia, Illinois, USA
 
  A Super Proton-Proton Collider (SPPC) that aims to explore new physics beyond the standard model is planned in China. Here we focus on the impact of beam-beam interactions in the SPPC. Simulations show that with the current optics and nominal tunes, the dynamic aperture (DA) with all the beam-beam interactions is less than 6σ, the dominant cause being the long-range interactions. First, we show the results of a tune scan done to maximize the DA. Next, we discuss the compensation of the long-range interactions by increasing the crossing angle and also by using current carrying wires.  
slides icon Slides MOYBA5 [1.004 MB]  
poster icon Poster MOYBA5 [0.727 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBA5  
About • paper received ※ 25 August 2019       paper accepted ※ 20 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLO13 Field Quality Analysis of Interaction Region Quadrupoles for JLEIC quadrupole, electron, interaction-region, operation 259
 
  • G.L. Sabbi
    LBNL, Berkeley, California, USA
  • B.R. Gamage, T.J. Michalski, V.S. Morozov, R. Rajput-Ghoshal, M. Wiseman
    JLab, Newport News, Virginia, USA
  • Y.M. Nosochkov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the US Department of Energy Office of Science.
The JLEIC physics goals of high luminosity and a full acceptance detector result in significant design challenges for the Interaction Region quadrupoles. Key requirements include large aperture, high field, compact transverse and longitudinal dimensions, and tight control of the field errors. In this paper, we present and discuss field quality estimates for the IR Quadrupoles of both electron and ion beamlines, obtained by integrating experience from pre-vious projects with realistic designs consistent with the specific requirements of the JLEIC collider.
 
poster icon Poster MOPLO13 [0.847 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO13  
About • paper received ※ 27 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLO14 From Start to Finish: Using 3D Printing Techniques to Build CBETA permanent-magnet, dipole, experiment, lattice 263
 
  • G.J. Mahler, S.J. Brooks, S.M. Trabocchi
    BNL, Upton, New York, USA
 
  Funding: NYSERDA contract with BNL
The extensive use of a simple 3D printer allowed for fast prototyping and development of many components used to build CBETA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO14  
About • paper received ※ 14 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLO20 Quench Performance and Field Quality of the 15 T Nb3Sn Dipole Demonstrator MDPCT1 in the First Test Run dipole, ion-effects, magnet-design, hadron 282
 
  • A.V. Zlobin, E.Z. Barzi, J.R. Carmichael, G. Chlachidze, J. DiMarco, V.V. Kashikhin, S. Krave, I. Novitski, C.R. Orozco, S. Stoynev, T. Strauss, M.A. Tartaglia, D. Turrioni
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
U.S. Magnet Development Program (US-MDP) is developing high-field accelerator magnets for a post-LHC hadron collider. In June 2019 Fermilab has tested a new Nb3Sn dipole model, which produced a world record field of 14.1 T at 4.5 K. The magnet design is based on 60 mm aperture 4-layer shell-type coils, graded between the inner and outer layers. The Rutherford cable in the two innermost layers consists of 28 strands 1.0 mm in diameter and the cable in the two outermost layers 40 strands 0.7 mm in diameter. Both cables were fabricated at Fermilab using RRP Nb3Sn composite wires produced by Bruker-OST. An innovative mechanical structure based on aluminum clamps and a thick stainless-steel skin was developed to preload brittle Nb3Sn coils and support large Lorentz forces. The maximum field for this design is limited by 15 T due to mechanical considerations. The first magnet assembly was done with lower coil pre-load to achieve 14 T and minimize the risk of coil damage during assembly. The 15 T dipole demonstrator design and the first results of magnet cold tests including quench performance and magnetic measurements are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO20  
About • paper received ※ 27 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBA2 Electron Ion Collider Machine Detector Interface electron, detector, hadron, quadrupole 335
 
  • B. Parker, E.C. Aschenauer, A. Kiselev, C. Montag, R.B. Palmer, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • M. Diefenthaler, Y. Furletova, T.J. Michalski, V.S. Morozov, D. Romanov, A. Seryi, R. Yoshida
    JLab, Newport News, Virginia, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  This presentation summarizes the physics requirements as they translate into accelerator requirements at the machine-detector interface. Unique aspects of the Interaction Region and detector acceptance – unique to an Electron Ion Collider – are summarized. Designs of both site-specific concepts are outlined.  
slides icon Slides TUZBA2 [13.525 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA2  
About • paper received ※ 29 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBA3 A High-Energy Design for JLEIC Ion Complex booster, electron, proton, linac 341
 
  • B. Mustapha, J.L. Martinez Marin
    ANL, Lemont, Illinois, USA
  • Y.S. Derbenev, F. Lin, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357 for ANL and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
A recent assessment of the scientific merit for a future Electron Ion Collider (EIC) in the US, by the National Academy of Sciences, found that such a facility would be unique in the world and would answer science questions that are compelling, fundamental, and timely. This assessment confirmed the recommendations of the 2015 Nuclear Science Advisory Committee for an EIC with highly polarized beams of electrons and ions, sufficiently high luminosity and variable center-of-mass (CM) energy. The baseline design of Jefferson Lab Electron-Ion Collider (JLEIC) has been updated to 100 GeV CM energy, corresponding to 200 GeV proton energy. We here present a high-energy design for the JLEIC ion complex. It consists of a 135 MeV injector linac, a 6-GeV non figure-8 pre-booster ring and a 40-GeV large ion booster, which could also serve as electron storage ring (e-ring). The energy choice in the accelerator chain is beneficial for a future upgrade to 140 GeV CM energy. The large booster is designed with the same shape and size of the original e-ring allowing for the option of building separate electron and ion rings by stacking them in the same tunnel along with the ion collider ring.
 
slides icon Slides TUZBA3 [5.435 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA3  
About • paper received ※ 03 September 2019       paper accepted ※ 25 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBA4 Interaction Region Magnets for Future Electron-Ion Collider at Jefferson Lab quadrupole, electron, solenoid, interaction-region 345
 
  • R. Rajput-Ghoshal, C. Hutton, F. Lin, T.J. Michalski, V.S. Morozov, M. Wiseman
    JLab, Newport News, Virginia, USA
 
  The Jefferson Lab Electron Ion Collider (JLEIC) is a proposed new machine for nuclear physics research. It uses the existing CEBAF accelerator as a full energy injector to deliver 3 to 12 GeV electrons into a new electron collider ring. An all new ion accelerator and collider complex will deliver up to 200 GeV protons. The machine has luminosity goals of 1034 cm-2 ses−1. The whole detector region including forward detection covers about 80 meters of the JLEIC complex. The interaction region design has recently been optimized to accommodate 200 GeV proton energy using conventional NbTi superconducting magnet technology. This paper will describe the requirements and preliminary designs for both the ion and electron beam magnets in the most complex 32 m long interaction region (IR) around the interaction point (IP). The interaction region has over thirty-seven superconducting magnets operating at 4.5K; these include dipoles, quadrupoles, skew-quadrupoles, solenoids, horizontal and vertical correctors and higher order multipole magnets. The paper will also discuss the electromagnetic interaction between these magnets.  
slides icon Slides TUZBA4 [6.444 MB]  
poster icon Poster TUZBA4 [1.549 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA4  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO01 Dual-Function Electron Ring-Ion Booster Design for JLEIC High-Energy Option booster, electron, quadrupole, lattice 529
 
  • J.L. Martinez Marin, B. Mustapha
    ANL, Lemont, Illinois, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: This work was supported by the U.S. DOE, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 for ANL and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
As part of the alternative design approach for the Jeffer-son Laboratory Electron-Ion Collider (JLEIC) ion com-plex, the electron storage ring (e-ring) is consolidated to also serve as a large booster for the ions. The goal of reaching 16 GeV/u or higher for all ions using only room-temperature magnets forces the re-design of the e-ring because of magnetic field and lattice limitations. The new design is challenging due to several imposed constraints: (1) use of room-temperature magnets, (2) avoiding transi-tion crossing, and (3) maintaining the size and shape of the original e-ring design as much as possible. A design study is presented for a 16 GeV/u large ion booster after analyzing different alternatives that use: (1) combined-function magnets, (2) large quadrupoles or (3) quadrupole doublets in the lattice design. This design boosts the injection energy to the collider ring from 8 GeV (proton-equivalent) in the original baseline design to 16 GeV/u for all ions which is beneficial for the high-energy option of JLEIC of 200 GeV or higher. A scheme for adapting the new large ion booster design to also serve as electron storage ring is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO01  
About • paper received ※ 28 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO04 The Latest Code Development Progress of JSPEC electron, simulation, emittance, operation 539
 
  • H. Zhang, S.V. Benson, Y. Roblin, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
The JLab Simulation Package on Electron Cooling (JSPEC) is an open source software developed at Jefferson Lab for electron cooling and intrabeam scattering (IBS) simulations. IBS is an important factor that leads to the growth of the beam emittance and hence the reduction of the luminosity in a high density ion collider ring. Electron cooling is an effective measure to overcome the IBS effect. Although JSPEC is initiated to fulfill the simulation needs in JLab Electron Ion Collider project, it can be used as a general design tool for other accelerators. JSPEC provides various models of the ion beam and the electron beam and it calculates the expansion rate and simulates the evolution of the ion beam under the IBS and/or electron cooling effect. In this report, we will give a brief introduction of JSPEC and then present the latest code development progress of JSPEC, including new models, algorithms, and the user interface.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO04  
About • paper received ※ 20 September 2019       paper accepted ※ 19 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO09 Electron-Ion Collider Performance Studies With Beam Synchronization via Gear-Change luminosity, electron, simulation, beam-beam-effects 553
 
  • I. Neththikumara, G.A. Krafft, B. Terzić
    ODU, Norfolk, Virginia, USA
  • G.A. Krafft, Y. Roblin
    JLab, Newport News, Virginia, USA
 
  Beam synchronization of the future electron-ion collider (EIC) is studied with introducing different bunch numbers in the two colliding beams. This allows non-pairwise collisions between the bunches of the two beams and is known as "gear-change", whereby one bunch of the first beam collides with all other bunches of the second beam, one at a time. Here we report on the study of how the beam dynamics of the Jefferson Lab Electron Ion collider concept is affected by the gear change. For this study, we use the new GPU-based code (GHOST). It features symplectic one-turn maps for particle tracking and Bassetti-Erskine approach for beam-beam interactions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO09  
About • paper received ※ 28 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLO15 Multipole Effects on Dynamic Aperture in JLEIC Ion Collider Ring multipole, quadrupole, electron, detector 559
 
  • B.R. Gamage, F. Lin, T.J. Michalski, V.S. Morozov, R. Rajput-Ghoshal, M. Wiseman
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • G.L. Sabbi
    LBNL, Berkeley, California, USA
 
  Funding: This material is based upon work supported by the U.S. DoE under Contracts No. DE-AC05-06OR23177, DE-AC02-76SF00515, and DEAC03-76SF00098.
In a collider, stronger focusing at the interaction point (IP) for low beta-star and high luminosity produces large beams at final focusing quadrupoles (FFQs). To achieve the high luminosity requirement in the Jefferson Lab Electron-Ion Collider (JLEIC), the interaction region (IR) beta functions peak at 4.2 km in downstream FFQs. These large beta functions and FFQ multipoles reduce the dynamic aperture (DA) of the ring. A study of the multipole effects on the DA was performed to determine limits on multipoles, and to include a multipole compensation scheme to increase the DA and beam lifetime.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO15  
About • paper received ※ 28 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLM67 Optimization of a Single-Cell Accelerating Structure for Rf Breakdown Test With Short Rf Pulses accelerating-gradient, acceleration, experiment, linear-collider 747
 
  • M.M. Peng, J. Shi
    TUB, Beijing, People’s Republic of China
  • M.E. Conde, G. Ha, C.-J. Jing, W. Liu, J.G. Power, J. Seok, J.H. Shao, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  RF breakdown is one of the major limitations to achieve high gradient acceleration for future structure-based normal conducting linear colliders. Previous statistic research shows that the breakdown rate is proportional to Ea30 * tp5, which indicates that the accelerating gradient Ea could be improved by using shorter RF pulses (tp). An X-band 11.7~GHz metallic single-cell structure has been designed for RF breakdown study up to 273~MV/m using short pulses (~3ns) generated by a 400~MW power extractor at Argonne Wakefield Accelerator (AWA) facility. The structure has also been scaled to 11.424~GHz for the long pulse (100-1500~ns) breakdown study driven by a klystron and a pulse compressor at Tsinghua X-band High Power Test-stand (TPoT-X), with the gradient up to 246~MV/m with 200~MW input power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM67  
About • paper received ※ 05 September 2019       paper accepted ※ 26 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH19 Record Fast Cycling Accelerator Magnet Based on High Temperature Superconductor cryogenics, proton, booster, operation 845
 
  • H. Piekarz, J.N. Blowers, S. Hays, V.D. Shiltsev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
We report on the prototype High Temperature Superconductor (HTS) based accelerator magnet capable to operate at 12 T/s B-field ramping rate with a very low supporting cryogenic cooling power thus indicating a feasibility of its application in large accelerator requiring high repetition rate and high average beam power. The magnet is designed to simultaneously accelerate two particle beams in the separate beam gaps energized by a single conductor. The design, construction and the power test arrangement of a prototype of this fast-cycling HTS based accelerator magnet are presented. As example, the cryogenic power loss limit measured in the magnet power test is discussed in terms of feasibility of application of such a magnet for the construction of an 8 GeV dual-beam proton booster accelerator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH19  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLO12 Design of a PIP-II Era Mu2e Experiment proton, target, experiment, solenoid 865
 
  • M.A. Cummings, R.J. Abrams, T.J. Roberts
    Muons, Inc, Illinois, USA
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  We present an alternative Mu2e-II production scheme for the Fermilab PIP-II era based on production schemes we devised for muon-collider and neutrino-factory front ends. Bright muon beams generated from sources designed for muon collider and neutrino factory facilities have been shown to generate two orders of magnitude more muons per proton than the current Mu2e production target and solenoid. In contrast to the current Mu2e, the muon collider design has forward-production of muons from the target. Forward production from 8 GeV protons would include high energy antiprotons, pions and muons, which would provide too much background for the Mu2e system. In contrast, the 800 MeV PIP-II beam does not have sufficient energy to produce antiprotons, and other secondaries will be at a low enough energy that they can be ranged out with an affordable shield of ~ 2 meters of concrete.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLO12  
About • paper received ※ 01 September 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAHC2 The Future Circular Collider and Physical Review Accelerators & Beams hadron, luminosity, lepton, operation 975
 
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  The proposed integrated program of the Future Circular Collider(FCC) takes a huge step beyond LEP and LHC. The FCC consists, in a first stage, of an energy- and luminosity-frontier electron-positron collider, which will operate at center-of-mass (c.m.) energies from about 90 to 365 GeV, and serve as electroweak factory. The second stage of the FCC will be a 100 TeV proton collider based on novel high-field magnets. A similar project is being proposed in China. In parallel to the development of future colliders, also the field of publications is undergoing profound changes. Physical Review Accelerators and Beams (PRAB) was founded in 1997 as a pioneering all-electronic diamond open-access journal, far ahead of its time. For many years PRAB was the fastest growing journal in the Physical Review family. Authors, editors and referees are highly internationalized. In this paper, on the occasion of the acceptance of the 2019 USPAS Prize for Achievement in Accelerator Science and Technology, I sketch the history, status, and challenges of FCC and PRAB.  
slides icon Slides THAHC2 [10.458 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THAHC2  
About • paper received ※ 27 August 2019       paper accepted ※ 15 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)