Keyword: interaction-region
Paper Title Other Keywords Page
MOYBA4 eRHIC Design Update electron, luminosity, hadron, proton 18
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, S. Verdú-Andrés, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The future electron-ion collider (EIC) aims at an electron-proton luminosity of 1033 to 1034 cm-2 sec-1 and a center-of-mass energy range from 20 to 140 GeV. The eRHIC design has been continuously evolving over a couple of years and has reached a considerable level of maturity. The concept is generally conservative with very few risk items which are mitigated in various ways.
 
slides icon Slides MOYBA4 [5.466 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBA4  
About • paper received ※ 24 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLO13 Field Quality Analysis of Interaction Region Quadrupoles for JLEIC quadrupole, electron, collider, operation 259
 
  • G.L. Sabbi
    LBNL, Berkeley, California, USA
  • B.R. Gamage, T.J. Michalski, V.S. Morozov, R. Rajput-Ghoshal, M. Wiseman
    JLab, Newport News, Virginia, USA
  • Y.M. Nosochkov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the US Department of Energy Office of Science.
The JLEIC physics goals of high luminosity and a full acceptance detector result in significant design challenges for the Interaction Region quadrupoles. Key requirements include large aperture, high field, compact transverse and longitudinal dimensions, and tight control of the field errors. In this paper, we present and discuss field quality estimates for the IR Quadrupoles of both electron and ion beamlines, obtained by integrating experience from pre-vious projects with realistic designs consistent with the specific requirements of the JLEIC collider.
 
poster icon Poster MOPLO13 [0.847 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO13  
About • paper received ※ 27 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBA4 Interaction Region Magnets for Future Electron-Ion Collider at Jefferson Lab quadrupole, electron, solenoid, collider 345
 
  • R. Rajput-Ghoshal, C. Hutton, F. Lin, T.J. Michalski, V.S. Morozov, M. Wiseman
    JLab, Newport News, Virginia, USA
 
  The Jefferson Lab Electron Ion Collider (JLEIC) is a proposed new machine for nuclear physics research. It uses the existing CEBAF accelerator as a full energy injector to deliver 3 to 12 GeV electrons into a new electron collider ring. An all new ion accelerator and collider complex will deliver up to 200 GeV protons. The machine has luminosity goals of 1034 cm-2 ses−1. The whole detector region including forward detection covers about 80 meters of the JLEIC complex. The interaction region design has recently been optimized to accommodate 200 GeV proton energy using conventional NbTi superconducting magnet technology. This paper will describe the requirements and preliminary designs for both the ion and electron beam magnets in the most complex 32 m long interaction region (IR) around the interaction point (IP). The interaction region has over thirty-seven superconducting magnets operating at 4.5K; these include dipoles, quadrupoles, skew-quadrupoles, solenoids, horizontal and vertical correctors and higher order multipole magnets. The paper will also discuss the electromagnetic interaction between these magnets.  
slides icon Slides TUZBA4 [6.444 MB]  
poster icon Poster TUZBA4 [1.549 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA4  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBA5 Algorithms Used in Action and Phase Jump Analysis to Estimate Corrections to Quadrupole Errors in the Interaction Regions of the LHC lattice, quadrupole, software, experiment 349
 
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
 
  Action and phase jump analysis has been used to estimate corrector strengths in the high luminosity interaction regions of the LHC. It has been proven that these corrections are effective to eliminate the beta-beating that is generated in those important regions and that propagates around the ring. More recently, it was also shown that the beta-beating at the interaction point can also be suppressed by combining k-modulation measurements with action and phase jump analysis. Applying this technique to the re-commissioning of the LHC in 2021 requires a good knowledge of the software developed for action and phase jump analysis over the years. In this paper a detailed description is made of all the modules that are part of this software and the corresponding algorithms.  
slides icon Slides TUZBA5 [0.431 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA5  
About • paper received ※ 22 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)