Paper | Title | Other Keywords | Page |
---|---|---|---|
MOYBB5 | Characterization and Performance of Plasma Window for Gas Flow Restriction in Different Geometries | plasma, electron, cathode, diagnostics | 44 |
|
|||
Funding: This work is supported by NSF Award PHY-1565546. The plasma window is a DC cascaded arc whose function is to restrict gas flow from a high pressure region to a low pressure region without the use of any solid separation*. As a result, the plasma window allows a greater pressure to be maintained than otherwise possible. This is a beneficial characteristic for gas charge strippers for ion accelerators, since the higher pressures enable the stripper to be shorter and allow the same amount of stripping interactions**. The flow rate reduction is established by the increase in gas temperature from the power deposited into the plasma via the cathodes, resulting in a dramatically increased viscosity. The flow rate reduction, depends on the properties of the plasma, including the electron density and temperature, pressure, and electrical conductivity. Understanding these properties in multiple arc geometries - in this work having either 6 mm or 10 mm channel diameter - provides a means optimizing the plasma window for a given design. Determinations of the properties for different conditions are shown, and results are compared with a PLASIMO simulation, which has been shown to yield comparable properties to measurements in an argon arc***. *A. Hershcovitch, Phys. Plasma 5, 2130 (1998). **J. A. Nolen and F. Marti, Rev. Accel. Sci. Tech. 6, 221 (2013). ***G. M. W. Kroesen et al., Plas. Chem. and Plas. Proc. 10, 531 (1990). |
|||
![]() |
Slides MOYBB5 [4.132 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBB5 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPLS06 | Mu*STAR: An Accelerator-Driven Subcritical Modular Reactor | site, neutron, operation, SRF | 163 |
|
|||
We present a conceptual design for a new modular, accelerator-driven subcritical reactor based on a molten salt. Mu*STAR is a reactor, that without re-design, can burn a variety of nuclear fuels, with the beam tuned to that fuel. We will discuss the elements of this system: the accelerator, the reactor, the spallation target, and the fractional distillation to separate volatile fission products. Our GAIN project with ORNL is successfully completed, with a design of the Fuel Processing Plant that will convert spent nuclear fuel into the molten-salt fuel for Mu*STAR. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLS06 | ||
About • | paper received ※ 01 September 2019 paper accepted ※ 03 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPLS09 | Engineering Design of Gallium-Nickel Target in Niobium Capsule, with a Major Focus on Determining the Thermal Properties of Gallium-Nickel Through Thermal Testing and FEA, for Irradiation at BLIP | radiation, proton, niobium, experiment | 170 |
|
|||
Funding: Funding:This abstract is authored by BSA operated under contract number DE-SC0012704. This research is supported by the U.S. DOE Isotope Program, managed by the Office of Science for Nuclear Physics. The Brookhaven Linac Isotope Producer (BLIP) produces several radioisotopes using a variable energy and current proton beam. The targets irradiated at BLIP are cooled by water and required to be isolated in a target capsule. During the design stage, thermal analysis of the target and cladding is carried out to determine the maximum beam power a target can handle during irradiation without destruction. In this work we designed a capsule for Gallium-Nickel (Ga 80%, Ni 20%) alloy target material and irradiated the target at the BLIP to produce the radioisotope Ge-68. Since no literature data is available on Ga4Ni’s thermal conductivity (K) and specific heat (C), measurements were carried out using thermal testing in conjunction with Finite Element Analysis (FEA). Steady-state one dimensional heat conduction method was used to determine the thermal conductivity. Transient method was used to calculate the specific heat. The test setup with same methodologies can be used to assess other targets in the future. Here, we will detail these studies and discuss the improved design and fabrication of this target. |
|||
![]() |
Poster MOPLS09 [0.751 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLS09 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 03 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPLO03 | Final Conversion of the Spallation Neutron Source Extraction Kicker Pulse Forming Network to a High Voltage Solid-State Switch | kicker, extraction, high-voltage, neutron | 240 |
|
|||
Funding: UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy The Spallation Neutron Source (SNS) extraction kicker 60Hz pulsed system uses 14 Blumlein pulse-forming network (PFN) modulators that require timing synchronization with stable rise times. A replacement design has been investigated and the kickers have been converted over to use a solid-state switch design, eliminating the lifetime and stability issues associated with thyratrons and subsequent maintenance costs. All kickers have been converted, preventing thyratron jitter from impacting the beam performance and allowing higher-precision target impact. This paper discusses the completion of the conversion of the high-voltage switch from a thyratron to a solid-state switch with improved stability of the extraction system and associated accelerator beam stability. |
|||
![]() |
Poster MOPLO03 [1.073 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO03 | ||
About • | paper received ※ 23 August 2019 paper accepted ※ 19 November 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUXBA3 | Robust Thermoacoustic Range Verification for Pulsed Ion Beam Therapy | proton, radiation, simulation, experiment | 294 |
|
|||
Funding: * Supported by the U.S D.O.E., Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. Measurements were performed at ANL’s ATLAS facility, which is a DOE Office of Science User Facility. Lack of online range verification generally limits application of proton therapy to cancers in the brain, spine, and to pediatric patients. Previously, thermoacoustic range verification (TARV) has been demonstrated in weakly scattering media with known sound speed [1]. At ATLAS, we demonstrated the accuracy and robustness of TARV relative to ultrasound (US) images despite acoustic heterogeneity and sound speed errors representing in vivo conditions [2]. 250 ns pulses deposited 0.26 Gy of 16 MeV protons and 2.3 Gy of 60 MeV helium ions into liquid targets. TA signals were detected by an US array that also generated US images. An air gap phantom displaced the Bragg peak by 6.5 mm and the scanner’s propagation speed setting was altered by ±5%. Weak and strong scatterers were placed between the Bragg peak and US array. Estimated Bragg peak locations were translated 6.5 mm by the air gap phantom and agreed with TRIM simulations to within 0.3 mm, even when TA emissions traveled through a strong acoustic scatterer. Soundspeed errors dilated, and acoustic heterogeneities deformed both US images and TA range estimates, confirming that TARV is accurate relative to US images. [1] Hickling, et al, Med Phys, 45(7), 2018. (review article) [2] S. Patch, D. Santiago, & B. Mustapha, Med Phys, 46(1), 2019. |
|||
![]() |
Slides TUXBA3 [4.449 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUXBA3 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLM37 | High Energy Beam Transport Along the 68-m LANSCE 1L Beamline to Optimize Neutron Production | proton, neutron, beam-transport, storage-ring | 446 |
|
|||
Funding: *Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396. An 800 MeV 100 µA proton beam is delivered to the Lujan Center, one of five user facilities at the LANSCE linear accelerator center, to generate an intense beam of pulsed neutrons. The Lujan Center beam transport line, known as 1L beamline, is over 68 meters in length, starting from the ROWS01. The beamline is consisted with bending and focusing elements before it reaches the end of the 1L beam optics system, where the beam spot size is nominally 1.5 cm (RMS). The Mark IV target assembly has been designed to optimize the neutron production for the 1L target in the Lujan center to improve the flux and resolution. As part of the safety review of this design, it becomes necessary to know the beam intensity and size on the new target. Using the new measurements of the beamline, calculated beam sizes using the LANL version of the beam envelope code TRANSPORT and CERN code MAD-X are compared. The input beam parameters for the codes were extracted from ORBIT analysis of the proton storage ring beam. Beam envelope measurements were made at various locations throughout the beamline using wire scanners. The predicted beam envelopes and measured data agree within expected errors. *LA-UR-19-22889 |
|||
![]() |
Poster TUPLM37 [5.009 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM37 | ||
About • | paper received ※ 23 August 2019 paper accepted ※ 03 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLO05 | Fixed Target Operation at RHIC in 2019 | experiment, controls, kicker, operation | 542 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. RHIC operated in fixed target mode at beam energies 4.59, 7.3, and 31.2 GeV/nucleon in 2019 as a part of the Beam Energy Scan II program. To scrape beam halo effectively at the fixed target which is 2.05 m away from the center of the STAR detectors, lattice design with relative large beta function at STAR was implemented at the two lower energies. The kickers of the base-band tune (BBQ) measurement system were engaged to dilute the beam transversely to maintain the event rate except for 31.2 GeV/nucleon. In addition, beam orbit control, tune and chromaticity adjustments were used to level the event rate. This paper will review the operational experience of RHIC in fixed target mode at various energies. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLO05 | ||
About • | paper received ※ 21 August 2019 paper accepted ※ 15 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPLE05 | Optical System for Observation of FRIB Target | radiation, shielding, vacuum, neutron | 570 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Facility for Rare Isotope Beams (FRIB) is a next-generation rare-isotope research facility under construction at Michigan State University (MSU). FRIB will produce rare-isotope beams of unprecedented intensities by impinging a 400 kW heavy-ion beam on a production target and by collecting and purifying the rare isotopes of interest with a fragment separator. A thermal imaging system (TIS) has been developed to monitor the beam spot on the production target. The main features and characteristics of optical system is presented. The prototype of optical system has been tested. |
|||
![]() |
Poster TUPLE05 [1.840 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE05 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 06 November 2020 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEXBB1 | Adaptive Machine Learning and Automatic Tuning of Intense Electron Bunches in Particle Accelerators | FEL, electron, controls, feedback | 609 |
|
|||
Machine learning and in particular neural networks, have been around for a very long time. In recent years, thanks to growth in computing power, neural networks have reshaped many fields of research, including self driving cars, computers playing complex video games, image identification, and even particle accelerators. In this tutorial, I will first present an introduction to machine learning for beginners and will also touch on a few aspects of adaptive control theory. I will then introduce some problems in particle accelerators and present how they have been approached utilizing machine learning techniques as well as adaptive machine learning approaches, for automatically tuning extremely short and high intensity electron bunches in free electron lasers. | |||
![]() |
Slides WEXBB1 [58.913 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEXBB1 | ||
About • | paper received ※ 28 August 2019 paper accepted ※ 06 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPLM06 | NuMI Beam Muon Monitor Data Analysis and Simulation for Improved Beam Monitoring | simulation, proton, diagnostics, experiment | 677 |
|
|||
Funding: Work supported by US DOE grants DE-SC0019264 and DE-SC0017815 and Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359. The NuMI muon monitors (MMs) are a very important diagnostic tool for monitoring the stability of the neutrino beam used by the NOvA experiment at Fermilab. The goal of our study is to maintain the quality of the MM signal and to establish the correlations between the neutrino and muon beam profile. This study could also inform the LBNF decision on the beam diagnostic tools. We report on the progress of beam scan data analysis (beam position, spot size, and magnetic horn current scan) and comparison with the simulation outcomes. |
|||
![]() |
Poster WEPLM06 [6.150 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM06 | ||
About • | paper received ※ 30 August 2019 paper accepted ※ 02 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPLM62 | First Cold Test Results of a Medium-Beta 644 MHz Superconducting 5-Cell Elliptical Cavity for the FRIB Energy Upgrade | cavity, pick-up, linac, accelerating-gradient | 731 |
|
|||
Funding: Work supported by Michigan State University. The superconducting linac for the Facility for Rare Isotope Beams (FRIB) will accelerate ions to 200 MeV per nucleon, with the possibility of a future energy upgrade to 400 MeV per nucleon via additional cavities. A 5-cell superconducting β = 0.65 elliptical cavity was designed for this purpose. Two unjacketed 5-cell niobium cavities were fabricated; the first of these was Dewar tested in February 2019. The surface preparation was bulk electropolishing (EP, 150 µm), hydrogen degassing (600°C, 10 hours), light EP (20 µm), clean-room high-pressure water rinsing, and in-situ baking (120°C, 48 hours). We achieved Q0 = 2·1010, equivalent to Rs = 10 nΩ, at the design gradient of 17.5 MV/m. The cavity was tested in a newly refurbished FRIB test Dewar, equipped with a variable input coupler. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM62 | ||
About • | paper received ※ 02 September 2019 paper accepted ※ 19 November 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPLH08 | Use of the Base-Band Tune Meter Kickers During the FY18 STAR Fixed Target Run at 3.85 GeV/u | kicker, detector, controls, experiment | 820 |
|
|||
The base-band tune meter (BBQ) kickers proved to be a useful tool in managing STAR trigger rates during the RHIC FY18 3.85GeV/u Fixed Target Run. The STAR collected over 3 times their original event goal, since it was possible to optimize the STAR trigger rates throughout the length of the physics store. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH08 | ||
About • | paper received ※ 16 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPLO12 | Design of a PIP-II Era Mu2e Experiment | proton, experiment, solenoid, collider | 865 |
|
|||
We present an alternative Mu2e-II production scheme for the Fermilab PIP-II era based on production schemes we devised for muon-collider and neutrino-factory front ends. Bright muon beams generated from sources designed for muon collider and neutrino factory facilities have been shown to generate two orders of magnitude more muons per proton than the current Mu2e production target and solenoid. In contrast to the current Mu2e, the muon collider design has forward-production of muons from the target. Forward production from 8 GeV protons would include high energy antiprotons, pions and muons, which would provide too much background for the Mu2e system. In contrast, the 800 MeV PIP-II beam does not have sufficient energy to produce antiprotons, and other secondaries will be at a low enough energy that they can be ranged out with an affordable shield of ~ 2 meters of concrete. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLO12 | ||
About • | paper received ※ 01 September 2019 paper accepted ※ 03 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THXBA3 | Adaptive Machine Learning and Feedback Control for Automatic Particle Accelerator Tuning | FEL, electron, controls, laser | 916 |
|
|||
Free electron lasers (FEL) and plasma wakefield accelerators (PWA) are creating more and more complicated electron bunch configurations, including multi-color modes for FELs such as LCLS and LCLS-II and custom tailored bunch current profiles for PWAs such as FACET-II. These accelerators are also producing shorter and higher intensity bunches than before and require an ability to quickly switch between many different users with various specific phase space requirements. For some very exotic setups it can take hours of tuning to provide the beams that users require. In this work, we present results adaptive machine learning and model independent feedback techniques and their application in both the LCLS and European XFEL to 1) control electron bunch phase space to create desired current profiles and energy spreads by tuning FEL components automatically, 2) maximize the average pulse output energy of FELs by automatically tuning over 100 components simultaneously, 3) preliminary results on utilizing these techniques for non-invasive electron bunch longitudinal phase space diagnostics at PWAs. | |||
![]() |
Slides THXBA3 [8.110 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THXBA3 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 15 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRXBB1 | Rare Isotope Beams and High-power Accelerators | linac, proton, heavy-ion, neutron | 993 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511. Facilities for rare isotope beams provide tools for nuclear science research and tools for applications ranging from fundamental nuclear structure and dynamics to societal benefits in medicine, energy, material sciences and national security. State-of-the-art rare isotope facilities can be based on an isotope separation on-line (ISOL) approach using mostly high-power proton beams striking a thick target where the isotopes are produced in the target, or an in-flight fragment separation (IF) approach using high-power heavy ion beams striking upon a thinner target where the isotopes continue out of the target followed by fragment separation. This tutorial class introduces high power hadron accelerators as driver machines for rare isotope production, summarizing the key design philosophy, physical and technical challenges, and current world-wide development status. As an example, the Facility for Rare Isotope Beams (FRIB) project is used to illustrate the process of establishing such facilities. |
|||
![]() |
Slides FRXBB1 [41.291 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-FRXBB1 | ||
About • | paper received ※ 02 September 2019 paper accepted ※ 17 November 2020 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||