JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
TY - CONF AU - Lin, B. AU - McKinlay, J. AU - Porsa, S. AU - Tan, Y.E. ED - Schaa, Volker R.W. ED - Bian, Lin ED - Chen, Zhichu ED - Dong, Yuhui ED - He, Ping TI - Shining Light on Precision: Unraveling XBPMs at the Australian Synchrotron J2 - Proc. of MEDSI2023, Beijing, China, 06-10 November 2023 CY - Beijing, China T2 - International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation T3 - 12 LA - english AB - At the Australian Synchrotron (AS), the need for nondestructive X-ray beam positioning monitors (XBPM) in the beamline front ends led to the development and installation of an in-house prototype using the photoelectric effect in 2021. This prototype served as a proof of concept and an initial step towards creating a customised solution for real time X-ray position monitoring. Of the new beamlines being installed at the AS, the High-Performance Macromolecular Crystallography (MX3) and Nanoprobe beamlines require XBPMs due to their small spot size and high stability requirements. However, a significant hurdle is the short distance from the source point to the XBPM location, resulting in an extremely restricted aperture to accurately monitor the beam position. Scaling down the photoelectric prototype to accommodate the available space has proven challenging, prompting us to explore alternative designs that utilize temperature-based methods to determine the beam position. This paper details insights made from investigating this alternative method and design. PB - JACoW Publishing CP - Geneva, Switzerland SP - 33 EP - 36 KW - laser KW - synchrotron KW - feedback KW - monitoring KW - photon DA - 2024/07 PY - 2024 SN - 2673-5520 SN - 978-3-95450-250-9 DO - doi:10.18429/JACoW-MEDSI2023-TUPYP001 UR - https://jacow.org/medsi2023/papers/tupyp001.pdf ER -