JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for TUPYP027: A Subnanometer Linear Displacement Actuator

TY  - CONF
AU  - Jiang, S.K.
AU  - Du, X.W.
AU  - Wang, Q.P.
ED  - Schaa, Volker R.W.
ED  - Bian, Lin
ED  - Chen, Zhichu
ED  - Dong, Yuhui
ED  - He, Ping
TI  - A Subnanometer Linear Displacement Actuator
J2  - Proc. of MEDSI2023, Beijing, China, 06-10 November 2023
CY  - Beijing, China
T2  - International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation
T3  - 12
LA  - english
AB  - With the development of synchrotron radiation technology, an actuator with sub-nanometer resolution, 100N driving force, and compatible with ultra-high vacuum environment is required. To achieve synchrotron radiation micro-nano focusing with adjustment resolution of sub-nanometer and high-precision rotation at the nano-arc level, most of the commercial piezoelectric actuators are difficult to meet the requirements of resolution and driving force at the same time. The flexure-based compound bridge-type hinge has the characteristic of amplifying or reducing the input displacement by a certain multiple, and can be used in an ultra-high vacuum environment. According to this characteristic, the bridge-type composite flexible hinge can be combined with commercial piezoelectric actuators, to design a new actuator with sub-nanometer resolution and a driving force of 100N. This poster mainly presents the principle of the new actuator, the design of the prototype and the preliminary test results of its resolution, stroke.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 70
EP  - 72
KW  - site
KW  - laser
KW  - synchrotron
KW  - vacuum
KW  - experiment
DA  - 2024/07
PY  - 2024
SN  - 2673-5520
SN  - 978-3-95450-250-9
DO  - doi:10.18429/JACoW-MEDSI2023-TUPYP027
UR  - https://jacow.org/medsi2023/papers/tupyp027.pdf
ER  -