JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
@inproceedings{yue:medsi2023-tuobm05, author = {S.P. Yue and G.C. Chang and Q. Hou and B. Ji and M. Li}, title = {{The Progress in Design, Preparation and Measurement of MLL for HEPS}}, % booktitle = {Proc. MEDSI'23}, booktitle = {Proc. 12th Int. Conf. Mech. Eng. Design Synchrotron Radiat. Equip. Instrum. (MEDSI'23)}, eventdate = {2023-11-06/2023-11-10}, pages = {24--27}, paper = {TUOBM05}, language = {english}, keywords = {focusing, laser, target, electron, interface}, venue = {Beijing, China}, series = {International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation}, number = {12}, publisher = {JACoW Publishing, Geneva, Switzerland}, month = {07}, year = {2024}, issn = {2673-5520}, isbn = {978-3-95450-250-9}, doi = {10.18429/JACoW-MEDSI2023-TUOBM05}, url = {https://jacow.org/medsi2023/papers/tuobm05.pdf}, abstract = {{The multilayer Laue lens (MLL) is a promising optical element with large numerical aperture and aspect ratio in synchrotron radiation facility. Two multilayers with 63(v)×43(h) ¿m2 aperture and focal spot size of 8.1(v)×8.1(h)nm2 at 10keV are fabricated by a 7-meter-long Laue lens deposition machine. Ultrafast laser etching, dicing and FIB are used to fabricate the multilayer into two-dimensional lenses meeting the requirement of diffraction dynamics. The multilayer grows flat without distortion and shows an amorphous structure characterized by TEM and SAED. The smallest accumulated layer position error is below ±5 nm in the whole area and the rms error is about 2.91nm by SEM and image processing. The focusing performance of MLL with actual film thickness is calculated by a method based on the Takagi¿Taupin description (TTD). The full width at half maximum(FWHM) of focus spot is 8.2×8.4 nm2 which is close to the theoretical result.}}, }