

Design and Improvements of a Cryo-Cooled Horizontal Diffracting Double Crystal Monochromator for HEPS

Yunsheng Zhang[†], Hao Liang, Lu Zhang, Yuanshu Lu, Dashan Shen Institute of High Energy Physics Beijing Synchrotron Radiation Laboratory, Beijing, China

Abstract

Horizontal diffracting double crystal monochromator (HDCM) are usually used in a 4th generation light source beamline due to the larger source size in the horizontal direction. This paper introduces the mechanical design and optimization of a HDCM for Low-dimension Struc-ture Probe Beamline of HEPS. In order to achieve the high stability requirement of 50nrad RMS, the structural design is optimized and modal improved through FEA. In order to meet the requirement of a total crystal slope error below 0.3µrad, FEA optimizations of the clamping for first and second crystal are carried out. The vacuum chamber is optimized to become more compact, improving the maintainability.

ACKNOWLEDGEMENTS

Many thanks to the members of our group(Yuanshu Lu, Yang Yang, Shan Zhang, Zekuan Liu, Dashan Shen, Zheng Sun) for their discussion during the monochromator design process, Thanks to staff of the beamline station and review experts for their valuable advice in the development of the monochromator. This work was supported by the High Energy Photon

Fabrication of the HDCM is un-der way. The results show that the design is capable of guarantee the

required surface slope error, stability, and adjustment requirements.

Source (HEPS), a major national science and technology infrastructure in China

INTRODUCTION

HEPS is the first high energy beamline and the first 4th generation beamline in China. Thanks to the low emit-tance of the source, the beam source size could be as small as 10 microns. The low-dimension structure probe beamline (LODiSP) of HEPS is beamline dedicated on x-ray surface diffraction technique. The energy range of this beamline is the beamsize is in vertical and in horizontal. When a monochromator is used in horizontal diffraction mode, the tolerance of vibration in pitch direction for a double crystal monochromator could be as low as 50 nrad.

The energy of the exit beam is a function of the Bragg angle θ (Fig. 1), and the resulting angular. and the result-ing angular range with silicon crystals Si(111) is about 2.52° ~ 24.32°(4.8 ~ 45 keV).

According to Figure 1, the spacing between reflected beam and Incident

DESIGN OF THE MONOCHROMATOR

The crystal slope error is an important parameter affecting the beam quality. In Figure 3, the design of this monochromator uses a scheme in which copper blocks are clamped on both sides of the crystal[2,3]. 1st crystal

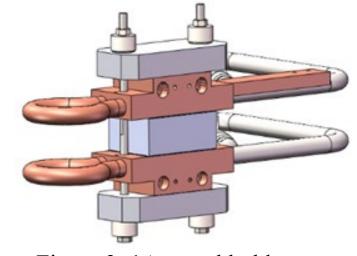
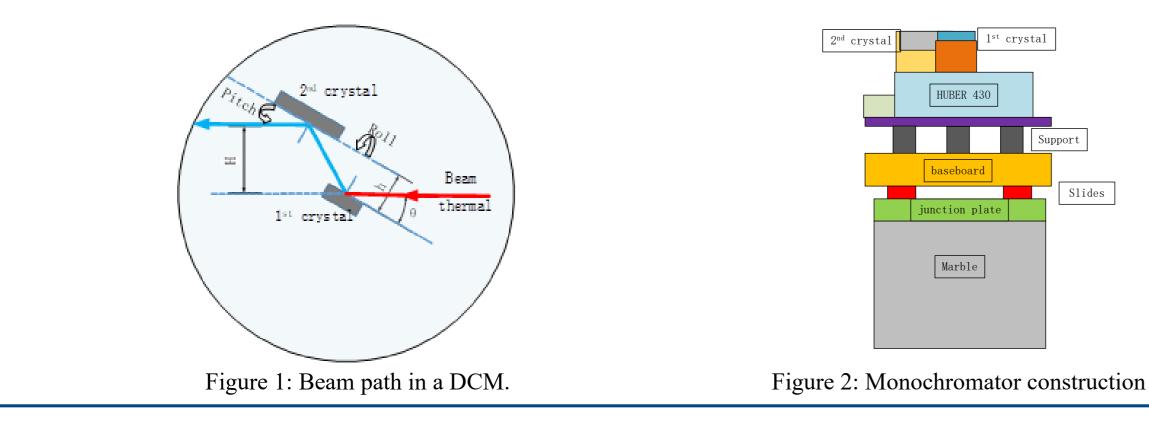
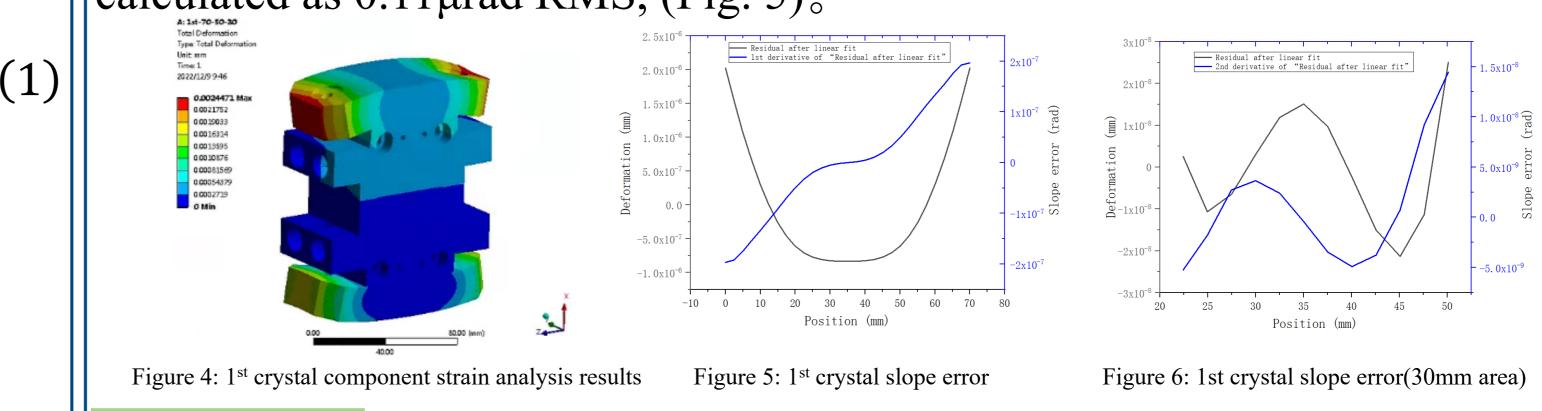



Figure 3: 1st crystal holder

The FEA method was used to analyze the influence of different clamping positions and different thicknesses of pressure plate on it. Through multiple iterative optimizations, the clamping structure that meets the requirements of slope error is obtained, and the strain cloud diagram is shown in Figure 4. The slope error affects the beam quality[4], Figure 4 shows the FEA deformation analysis result as a contour map. The curve reflects the change in slope of the centerline of the crystal surface when stressed. The slope error is calculated as 0.11μ rad RMS, (Fig. 5).


 $H = h \times 2COS\theta$

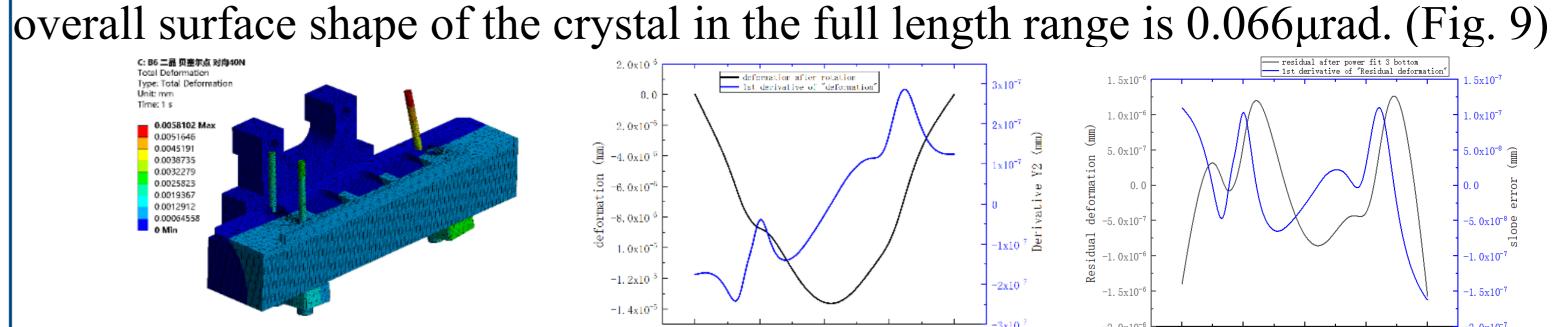
VACUUM CHAMBER

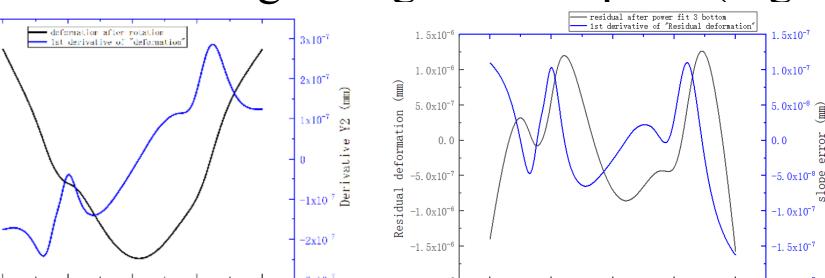
The vacuum chamber was partially replaced with a square chamber. Improved compactness. The total weight of the cavity is about 645kg. The FEA results show that the maximum stress is 55Mpa(Fig.10) and the maximum strain of the chamber is 0.1mm(Fig.11). according to the yield strength, safety is calculated as 3.7.

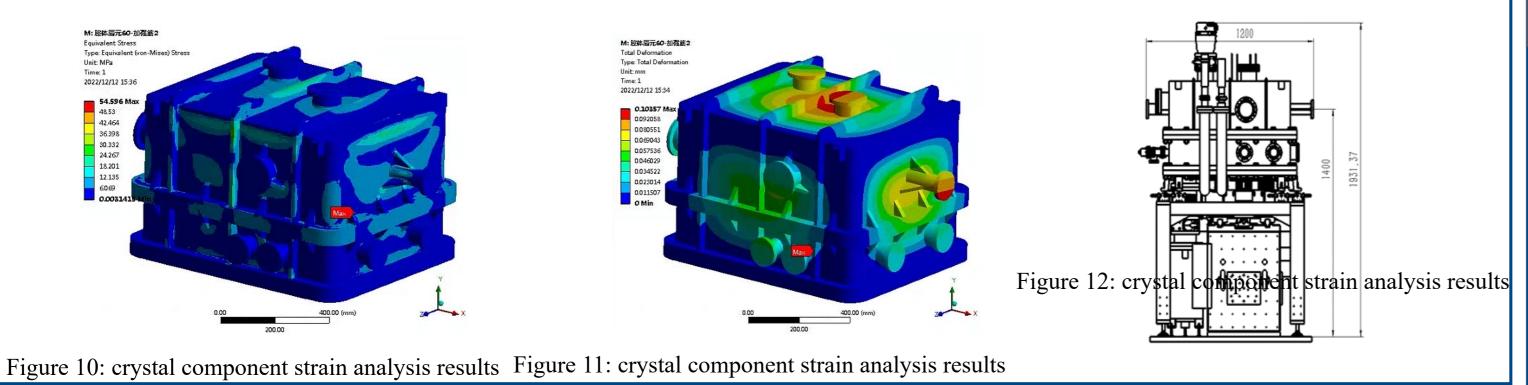
The chamber is designed to be divided into two layers for easy access and maintenance. A cool-conducting copper column is added at the bottom plate. Reduce motor heat generation and temperature drift. The monochromator is equipped with 2 pneumatic insert valves along the inlet and outlet flanges in the direction of the beamline to isolate the vacuum and participate in the safety interlock; The molecular pump and ion pump port are equipped with manual insert valve, which is used to isolate the vacuum of the vacuum pump and the monochromator cavity; Equipped with metal angle valve, it can be used for pre-evacuation(Fig.12).

2nd crystal

The second crystal adopts the Bessel points clamping scheme, which is conducive to controlling the slope error of the crystal surface. Figure 7 shows the FEA deformation analysis result as a contour map.


The overall surface shape of the two crystals in the arc vector direction of the photonic surface is 0.175µrad, (Fig. 8) after deducting quadratic term, the


🗐 -4. 0x10 ⁶


 $\frac{5}{4}$ =6.0x10⁻⁶

-8, 0x10 ⁶

 1.0×10^{-5}

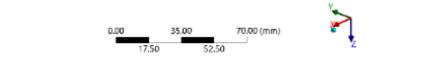


Figure 7: 2nd crystal component strain analysis results

Figure 8: 2nd crystal slope error Figure 9: 2nd crystal slope error(deducting quadratic term)

CONCLUSIONS

The results show that the above analysis and calculation theoretically prove

that the design can guarantee the required surface slope error, stability and

adjustment requirements. The Fabrication of the equipment is underway.

REFERENCES

[1] Gambitta, A. "A double crystal monochromator with self-compensation mechanism for ELETTRA XRD2 beamline." Diamond Light Source Proceedings 1.MEDSI-6 (2010): e23.

[2] Mochizuki, T., et al. "Cryogenic cooling monochromators for the SPring-8 undualtor beamlines." Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467 (2001): 647-649.

[3] Tamasaku, Kenji, et al. "Performance of cryogenically cooled monochromators at SPring-8." X-Ray Mirrors, Crystals, and Multilayers II. Vol. 4782. SPIE, 2002.

[4] Follath, Rolf. "The versatility of collimated plane grating monochromators." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467 (2001): 418-425...