Keyword: beam-transport
Paper Title Other Keywords Page
MOPRC007 Status of and Plans for the Beam Dynamics Program DYNAC rfq, space-charge, target, proton 80
 
  • E. Tanke, M. Eshraqi, Y.I. Levinsen, A. Ponton
    ESS, Lund, Sweden
  • S. Valero
    CEA, Gif-sur-Yvette, France
 
  A short introduction to the linac beam dynamics code DYNAC will be given. Recently implemented features, such as a Graphical User Interface (GUI), will be presented and benchmarking of the Radio Frequency Quadrupole (RFQ) model will be discussed. Additional planned features to DYNAC and the GUI will be touched upon.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRC019 Beam Dynamic of Transport Line 1+ with New HRMS for the SPES Project dipole, simulation, ion, beam-losses 114
 
  • E. Khabibullina
    MEPhI, Moscow, Russia
  • L. Bellan, M. Comunian, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • E. Khabibullina
    ITEP, Moscow, Russia
  • A.D. Russo
    INFN/LNS, Catania, Italy
 
  SPES (Selective Production of Exotic Species) is integrated Italian facility in LNL (Laboratori Nazionali di Legnaro, Legnaro, Italy) for production of high-intensity and highly charged beams of neutron-rich nuclei for Advanced Studies. The facility is based on 35-70MeV proton cyclotron, an ISOL fission target station and the existing ALPI superconducting accelerator as the post accelerator. In this paper the results of beam dynamic simulation of 132Sn ion beam transport line from Beam Cooler to the Charge Breeder, including HRMS (High Resolution Mass Separator) with mass resolution 1/20000 and electrostatic dipoles are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR052 LEBT Commissioning of the J-PARC LINAC rfq, linac, extraction, ion 251
 
  • T. Shibata, K. Ikegami, T. Maruta, K. Ohkoshi
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • H. Asano, Y. Kondo, A. Miura, H. Oguri
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
  • F. Naito, A. Takagi
    KEK, Tokai, Ibaraki, Japan
 
  After upgrade of J-PARC Linac in 2014, Low Energy Beam Transport (LEBT) beam commissioning of the J-PARC LINAC has been made for improving H-beam intensity extracted from Linac. Currents of two solenoid coils and steering magnets in LEBT are optimized with extraction and acceleration voltages for static acceleration in ion source (IS) which decides on an initial emittance diagram of H beam. As a result of LEBT and IS parameter optimization, beam transmission rate of RFQ has been reached up to 96 % in 50 mA H current operation. Moreover, PIC-MC (Particle-In-Cell Monte-Carlo) simulation model is developed for H transport in LEBT. Comparison between experimental and numerical results are presented to clarify beam physics from IS exit to RFQ entrance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR061 Commissioning of the RI Production Beam Line of KOMAC target, proton, isotope-production, linac 271
 
  • H.-J. Kwon, Y.-S. Cho, H.S. Kim, Y.G. Song, S.P. Yun
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science, ICT & Future Planning of the Korean Government.
A radioisotope (RI) production beam line has been developed at Korea Multi-purpose Accelerator Complex (KOMAC) in 2015 and the commissioning started in 2016. The beam parameters of the beam line are 100-MeV beam energy with a maximum 30 kW beam power, which is driven by KOMAC 100-MeV proton linac. The main components of the beam line are a beam transport system, a target transport system, a cooling system for target and hot cell. KOMAC has a plan to commission the beam line and get an operational license in 2016 and start user service in 2017. In this paper, the development and initial commissioning results of the RI production beam line are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP106023 Intra Bunch Train Transverse Dynamics in the Superconducting Accelerators FLASH and European XFEL cavity, HOM, transverse-dynamics, operation 333
 
  • T. Hellert, W. Decking, M. Dohlus
    DESY, Hamburg, Germany
 
  At FLASH and the European XFEL accelerator superconducting 9-cell TESLA cavities accelerate long bunch trains at high gradients in pulsed operation. Several RF cavities with individual operating limits are supplied by one RF power source. Within the bunch train, the low-level-RF system is able to restrict the variation of the vector sum voltage and phase of one control line below 3·10-4 and 0.06 degree, respectively. However, individual cavities may have a significant spread of amplitudes and phases. Misaligned cavities in combination with variable RF parameters will cause significant intra-pulse orbit distortions, leading to an increase of the multi-bunch emittance. An efficient model including coupler kicks was developed to describe the effect at low beam energies. Comparison with start-to-end tracking and experimental data will be shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOP106023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR041 Manufacturing, Assembly and Tests of the LIPAc Medium Energy Beam Transport Line (MEBT) vacuum, SRF, linac, controls 554
 
  • I. Podadera, P. Abramian, B. Brañas, J. Calero, J. Castellanos, J.M. García, D. Gavela, A. Guirao, J.L. Gutiérrez, D. Jiménez-Rey, M. Lafoz, D. López, L.M. Martínez, E. Molina Marinas, J. Mollá, C. Oliver, A. Soleto, F. Toral, R. Varela, V. Villamayor
    CIEMAT, Madrid, Spain
  • J. Castellanos
    UNED, Madrid, Spain
  • O. Nomen
    IREC, Sant Adria del Besos, Spain
 
  Funding: This work has been funded by the Spanish Ministry of Economy and Competitiveness under the Agreement as published in BOE, 16/01/2013, page 1988 and the project FIS2013-40860-R.
LIPAc* will be a 9 MeV, 125 mA CW deuteron accelerator which aims to validate the technology that will be used in the future IFMIF-DONES accelerator**. The acceleration of the beam will be carried out in two stages. An RFQ will increase the energy up to 5 MeV before a Superconducting RF (SRF) linac made of a chain of eight Half Wave Resonators bring the particles to the final energy. Between both stages, a Medium Energy Beam Transport line (MEBT)*** is in charge of transporting and matching the beam between the RFQ and the SRF. The transverse focusing of the beam is controlled by five quadrupole magnets with integrated steerers, grouped in one triplet and one doublet. Two buncher cavities surrounding the doublet handle the longitudinal dynamics. Two movable collimators are also included to purify the beam optics coming out the RFQ and avoid losses in the SRF. In this contribution, the final integrated design of the beamline will be shown, together with the auxiliaries. The manufacturing of all the components and the integration in the beamline will be depicted. The final tests carried out to the beamline prior to the installation in the accelerator will be also reported.
* P. Cara et al., IPAC16, to be published, Busan, Korea (2016).
** A. Ibarra et al., Fus. Sci. Tech., 66, 1, p. 252-259 (2014).
*** I. Podadera et al., IPAC11, San Sebastian, Spain (2011).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC031 Manufacturing of MEBT Combined Quadrupole & Steerer Magnets for the Linear IFMIF Prototype Accelerator LIPAC quadrupole, radiation, factory, vacuum 840
 
  • J. Castellanos, B. Brañas, J. Mollá, C. Oliver, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • R. Iturbe, B. López
    ANTEC Magnets SLU, Vizcaya, Spain
  • O. Nomen
    IREC, Sant Adria del Besos, Spain
 
  Funding: This work has been funded by the Spanish Ministry of Economy and Competitiveness under the Agreement as published in BOE, 16/01/2013, page 1988.
The Medium Energy Beam Transport line (MEBT) that is being installed on the LIPAC accelerator* will have five quadrupole and steerer magnets which have been recently manufactured and tested. The design of the magnets was done by CIEMAT** and considers a magnetic yoke made of four solid iron quadrants joined together. The yoke integrates four water-cooled coils (quadrupole) and eight air-cooled coils (steerers) made of copper wires. The manufacturing and testing (excluded magnetic measurements) of the five magnets were carried out by the Spanish company ANTECSA. This paper focuses on the technical aspects considered during the manufacturing and the assembly of the different components of the magnets. The details about the geometrical, electrical and hydraulic measurements and tests that were carried out before the magnetic measurements are also described.
* A. Mosnier et al., IPAC10, MOPEC056, p.588, Kyoto, Japan (2010)
** C. Oliver et al., IPAC11, WEPO014, p. 2424, San Sebastián, Spain (2011)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR041 650 MHz Elliptical Superconducting RF Cavities for PIP-II Project cavity, linac, cryomodule, controls 943
 
  • I.V. Gonin, E. Borissov, A. Grassellino, C.J. Grimm, V. Jain, S. Kazakov, V.A. Lebedev, A. Lunin, C.S. Mishra, D.V. Mitchell, T.H. Nicol, Y.M. Pischalnikov, G.V. Romanov, A.M. Rowe, N.K. Sharma, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  The PIP-II 800 MeV linac employs 650 MHz elliptical 5-cell CW-capable cavities to accelerate up to 2 mA peak beam current of H in the energy range 185 - 800 MeV. The low beta (LB) βG = 0.61 portion should accelerate from 185 MeV-500 MeV using 33 LB dressed cavities in 11 cryomodules. The high beta (HB) βG = 0.92 portion of the linac should accelerate from 500 to 800 MeV using 24 HB dressed cavities in 4 cryomodules. The development of both LB and HB cavities is going on under IIFC collaboration. The development of LB cavity initiated at VECC Kolkatta and HB cavity is going at RRCAT, Indore. This paper present design methodology adopted starting from RF design to get mechanical dimensions of the RF cells and then explains dressing of the cavity for both low beta and high beta cavities. Further the tuner design and its integration to the dressed cavity is discussed. Paper also explains the salient design features of these dressed cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1A02 Installation and On-Line Commissioning of EBIS at ATLAS ion, electron, rfq, emittance 1022
 
  • P.N. Ostroumov, A. Barcikowski, J.A. Clark, C. Dickerson, M.R. Hendricks, Y. Luo, R.C. Pardo, C.E. Peters, M.A. Power, G. Savard, S.I. Sharamentov, R.C. Vondrasek, G.P. Zinkann
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.
An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Ion Breeder Upgrade (CARIBU) facility at ATLAS. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly-charged cesium ion source. The EBIS performance meets the breeding requirements to deliver CARIBU beams to ATLAS. EBIS can provide charge-to-mass ratios >=1/7 for all CARIBU beams with breeding times in the range of 6 ms to 30 ms. A record high breeding efficiency of up to 28% into a single charge state of Cs28+ has been demonstrated. Following the offline testing EBIS was moved to the front end of ATLAS where the alignment of EBIS was substantially improved and additional beam diagnostic tools both for electron and ion beams were installed. This paper will discuss EBIS improvements and present the results of on-line commissioning.
 
slides icon Slides FR1A02 [7.717 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-FR1A02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)