Keyword: extraction
Paper Title Other Keywords Page
MOPLR052 LEBT Commissioning of the J-PARC LINAC rfq, linac, ion, beam-transport 251
 
  • T. Shibata, K. Ikegami, T. Maruta, K. Ohkoshi
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • H. Asano, Y. Kondo, A. Miura, H. Oguri
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
  • F. Naito, A. Takagi
    KEK, Tokai, Ibaraki, Japan
 
  After upgrade of J-PARC Linac in 2014, Low Energy Beam Transport (LEBT) beam commissioning of the J-PARC LINAC has been made for improving H-beam intensity extracted from Linac. Currents of two solenoid coils and steering magnets in LEBT are optimized with extraction and acceleration voltages for static acceleration in ion source (IS) which decides on an initial emittance diagram of H beam. As a result of LEBT and IS parameter optimization, beam transmission rate of RFQ has been reached up to 96 % in 50 mA H current operation. Moreover, PIC-MC (Particle-In-Cell Monte-Carlo) simulation model is developed for H transport in LEBT. Comparison between experimental and numerical results are presented to clarify beam physics from IS exit to RFQ entrance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRC011 Ongoing Studies of the SuSI ECR Ion Source and Low Energy Beam Transport Line at the MSU NSCL ion, ion-source, plasma, emittance 438
 
  • A.N. Pham, J. Fogleman, D. Leitner, G. Machicoane, D.E. Neben, S. Renteria, J.W. Stetson, L. Tobos
    NSCL, East Lansing, Michigan, USA
 
  Funding: Research supported by Michigan State University and National Science Foundation Award PHY-1415462.
Heavy ion accelerator laboratories for nuclear science and rare isotope research require a wide array of high intensity heavy ion beams. Due to their versatility and robustness, Electron Cyclotron Resonance (ECR) ion sources are the choice injectors for the majority of these facilities worldwide. Steady improvements in the performance of ECR ion sources have been successful in providing intense primary beams for facilities such as the National Superconducting Cyclotron Laboratory (NSCL). However, next generation heavy ion beam laboratories, such as the Facility for Rare Isotope Beam (FRIB), require intensities that approaching the limits of current possibility with state of the art ion source technology. In this proceedings, we present the ongoing low energy beam transport characterization efforts of a superconducting ECR ion source injector system at the MSU NSCL.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC012 Resonance Control System for the CEBAF Separator Upgrade cavity, controls, resonance, LLRF 792
 
  • T. E. Plawski, R. Bachimanchi, B. Bevins, L. Farrish, C. Hovater, G.E. Lahti, M.J. Wissmann
    JLab, Newport News, Virgina, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of four new 748.5 MHz normal conducting deflecting cavities in the 5th pass extraction region. The RF system employs two digital LLRF systems controlling four normal conducting cavities in a vector sum setting. Cavity tune information of the individual cavities is obtained using a multiplexing scheme of the forward and reflected RF signals. Water skids equipped with heaters and valves are used to control resonance. A new FPGA-based hardware and EPICS-based predictive control algorithm has been developed to support reliable operation of the beam extraction process. This paper presents the architecture design of the existing hardware and software as well as a plan to develop a model predictive control system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)