Keyword: factory
Paper Title Other Keywords Page
MOPLR025 Investigation of Low-Level Nitrogen in Niobium by Secondary Ion Mass Spectrometry ion, niobium, SRF, cavity 196
 
  • J. Tuggle
    Virginia Polytechnic Institute and State University, Blacksburg, USA
  • M.J. Kelley
    The College of William and Mary, Williamsburg, Virginia, USA
  • A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • F.A. Stevie
    NCSU AIF, Raleigh, North Carolina, USA
 
  Funding: Supported by the U.S. DOE Office of Science, ONP contract DE-AC05-06OR23177 and OHEP grant SC00144475. Tuggle is supported by Nanoscale Characterization and Fabrication Laboratory at Virginia Tech.
Understanding the improvement of the SRF cavity quality factor by low-level nitrogen addition ("N-doping") is attracting much attention from researchers. Precise, repeatable measurement of the nitrogen profile in the parts-per-thousand to parts-per-million range is vital. Secondary Ion Mass Spectrometry (SIMS) is the approach of choice because of excellent sensitivity and depth resolution. Accurate quantitation must consider sample properties, such as surface topography and crystal structure, calibration of the instrument with reference materials, and data analysis. We report the results of a SIMS study in which polycrystal and single crystal coupons were N-doped, each accompanied by new SRF-grade niobium sheet equivalent to a single cell cavity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR043 Cavity Processing and Preparation of 650 MHz Elliptical Cell Cavities for PIP-II cavity, SRF, vacuum, cathode 229
 
  • A.M. Rowe, S.K. Chandrasekaran, A. Grassellino, O.S. Melnychuk, M. Merio, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • T. Reid
    ANL, Argonne, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
The PIP-II project at Fermilab requires fifteen 650 MHz SRF cryomodules as part of the 800 MeV LINAC that will provide a high intensity proton beam to the Fermilab neutrino program. A total of fifty-seven high-performance SRF cavities will populate the cryomodules and will operate in both pulsed and continuous wave modes. These cavities will be processed and prepared for performance testing utilizing adapted cavity processing infrastructure already in place at Fermilab and Argonne. The processing recipes implemented for these structures will incorporate state-of-the art processing and cleaning techniques developed for 1.3 GHz SRF cavities for the ILC, XFEL, and LCLS-II projects. This paper describes the details of the processing recipes and associated chemistry, heat treatment, and cleanroom processes at the Fermilab and Argonne cavity processing facilities. This paper also presents single and multi-cell cavity test results with quality factors above 5·1010 and accelerating gradients above 30 MV/m.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR023 Impurity Content Optimization to Maximize Q-Factors of Superconducting Resonators cavity, SRF, niobium, superconductivity 515
 
  • M. Martinello, M. Checchin, A. Grassellino, O.S. Melnychuk, S. Posen, A. Romanenko, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • M. Checchin
    Illinois Institute of Technology, Chicago, Illlinois, USA
  • J. Zasadzinski
    IIT, Chicago, Illinois, USA
 
  Quality factor of superconducting radio-frequency (SRF) cavities is degraded whenever magnetic flux is trapped in the cavity walls during the cooldown. In this contribution we study how the trapped flux sensitivity, defined as the trapped flux surface resistance normalized for the amount of trapped flux, depends on the mean free path. A systematic study of a variety of 1.3 GHz cavities with different surface treatments (EP, 120 C bake and different N-doping) is carried out. A bell shaped trend appears for the range of mean free path studied. Over-doped cavities fall at the maximum of this curve defining the largest values of sensitivity. In addition, we have studied the trend of the BCS surface resistance contribution as a function of mean free path, showing that N-doped cavities follow close to the theoretical minimum. Adding these results together we show that the 2/6 N-doping treatment gives the highest Q-factor values at 2 K and 16 MV/m, as long as the magnetic field fully trapped during the cavity cooldown is lower than 10 mG.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR024 Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators induction, accelerating-gradient, cavity, linac 519
 
  • M. Checchin, A. Grassellino, M. Martinello, S. Posen, A. Romanenko
    Fermilab, Batavia, Illinois, USA
  • M. Martinello
    Illinois Institute of Technology, Chicago, Illlinois, USA
  • J. Zasadzinski
    IIT, Chicago, Illinois, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the United States Department of Energy.
The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR048 Status and Lesson Learned from Manufacturing of FPC Couplers for the XFEL Program SRF, Windows, cryomodule, status 572
 
  • S. Sierra, G. Garcin, Ch.L. Lievin, G. Vignette
    TED, Velizy-Villacoublay, France
  • A. Gallas, W. Kaabi
    LAL, Orsay, France
  • M. Knaak, M. Pekeler, L. Zweibaeumer
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  For the XFEL accelerator, Thales, RI research Instrument and LAL are working on the manufacturing, assembly and conditioning of Fundamental power couplers. 670 couplers has been manufactured. The main characteristics of these couplers are remained at 1.3 GHz. The paper describes the full production activity from the starting of the program We describe the lesson learned from a mass production of FPC coupler and different steps necessaries for obtaining a rate up to 10 couplers a week. we propose also some other way to be optimized for a future possible mass production of such components. With comparison of processes and adaptation which could benefit to an increase rate, if needed, including some of them which could be studies from the coupler definition to the manufacturing process in order to obtain a stable and possible increased rate or lower cost of production by decreasing the risks on programs. The status of the production curve during the program is also given  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC008 Status of the Development and Manufacturing of LCLS-II Fundamental Power Couplers SRF, status, Windows, cryomodule 782
 
  • S. Sierra, G. Garcin, Ch.L. Lievin, C. Ribaud, G. Vignette
    TED, Velizy-Villacoublay, France
  • M. Knaak, A. Navitski, M. Pekeler, L. Zweibaeumer
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  For the LCLS-II project, Thales and RI research Instrument are working on the manufacturing and assembly of the Fundamental Power Couplers. The paper describes the production of the Fundamental Power Couplers for the LCLS-II project. The main characteristics of these couplers are remained at 1.3 GHz. It describes the main challenges to be overcome principally on the Warm Internal conductor, with a thickness of copper of 150μm. The results obtained on this coating We describe the results obtained on the prototype phase and the status of the serial production on the date of the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC031 Manufacturing of MEBT Combined Quadrupole & Steerer Magnets for the Linear IFMIF Prototype Accelerator LIPAC quadrupole, radiation, beam-transport, vacuum 840
 
  • J. Castellanos, B. Brañas, J. Mollá, C. Oliver, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • R. Iturbe, B. López
    ANTEC Magnets SLU, Vizcaya, Spain
  • O. Nomen
    IREC, Sant Adria del Besos, Spain
 
  Funding: This work has been funded by the Spanish Ministry of Economy and Competitiveness under the Agreement as published in BOE, 16/01/2013, page 1988.
The Medium Energy Beam Transport line (MEBT) that is being installed on the LIPAC accelerator* will have five quadrupole and steerer magnets which have been recently manufactured and tested. The design of the magnets was done by CIEMAT** and considers a magnetic yoke made of four solid iron quadrants joined together. The yoke integrates four water-cooled coils (quadrupole) and eight air-cooled coils (steerers) made of copper wires. The manufacturing and testing (excluded magnetic measurements) of the five magnets were carried out by the Spanish company ANTECSA. This paper focuses on the technical aspects considered during the manufacturing and the assembly of the different components of the magnets. The details about the geometrical, electrical and hydraulic measurements and tests that were carried out before the magnetic measurements are also described.
* A. Mosnier et al., IPAC10, MOPEC056, p.588, Kyoto, Japan (2010)
** C. Oliver et al., IPAC11, WEPO014, p. 2424, San Sebastián, Spain (2011)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR008 3-Cell Superconducting Traveling Wave Cavity Tuning at Room Temperature cavity, accelerating-gradient, SRF, feedback 858
 
  • R.A. Kostin
    LETI, Saint-Petersburg, Russia
  • P.V. Avrakhov, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • T.N. Khabiboulline, A.M. Rowe, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by US DOE SBIR # DE-SC0006300
A superconducting traveling wave (SCTW) cavity with a feedback waveguide will support a higher average acceleration gradient compared to conventional SRF standing wave cavities [1]. Euclid Techlabs, in collaboration with Fermilab, previously demonstrated a high accelerating gradient in a single cell cavity with a feedback waveguide [2], and the new waveguide design did not limit the cavity performance. The next step is high gradient traveling wave SRF cavity test. A 3-Cell SCTW cavity was designed and developed [3] to demonstrate the SRF traveling wave regime. Two Nb SCTW cavities were built, characterized and cold tested in 2016. This paper presents the results of cavity inspection, field flatness analysis, along with a discussion of the tuning procedure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR015 Fifth-Order Moment Correction for Beam Position and Second-Order Moment Measurement linac, simulation, experiment, quadrupole 876
 
  • K. Yanagida, H. Hanaki, S. Suzuki
    JASRI/SPring-8, Hyogo-ken, Japan
 
  For precise beam position measurement using a beam position monitor (BPM), a recursive correction which is expressed by the higher-order polynomials of beam positions are usually adopted. We recognized that the higher-order polynomials came from the higher-order moments and that beam position measurement is consequently influenced by a transverse beam shape. To investigate what order was required for adequate correction, we performed a successive iteration for the six-electrode BPM holding an inner radius of 16mm (circular cross-section). The successive iteration is a method to obtain a self-consistent solution for the higher-order correction. An amplitude of static electric field due to a beam charge was calculated by two-dimensional mirror charge method. As a result of the successive iteration, the convergence region was large enough for ordinary measurements (from lower than -5mm to higher than 5mm horizontally and vertically). In the convergence region the root mean square of the differences between the set and calculated vertical position were obtained as 0.487mm (without correction), 0.030mm (with third-order correction) and 0.003mm (with fifth-order correction).  
poster icon Poster THPLR015 [6.049 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)